
Page 1 of 8

Department of Mathematics, France.
Syed Ahmad Maaz
Solar Winds Compromise Malware Analysis

Submitted: 12 Jan 2025 Accepted: 20 Jan 2025 Published: 25 Jan 2025

Citation: Maaz, S A (2025) Solar Winds Compromise Malware Analysis. American J of Math and Comput Applications. 1(1),
01-13.

*Corresponding author: Syed Ahmad Maaz, Department of Mathematics, France.

Page 1 of 13

American Journal of Mathematical and Computer Applications

Research Article
Volume 1 | Issue 1

American j of math and comput applications

Abstract

The SolarWinds compromise was one of the most significant cyberattacks of the 21st century, not because it breached a single
organization, but because it triggered a much larger supply chain incident that affected thousands of organizations globally. Attributed
to the Advanced Persistent Threat (APT29) threat group, this attack leveraged sophisticated malware tools to infiltrate high-profile
entities. This paper provides a detailed analysis of the four main malware variants used in the attack: SIBOT, Raindrop, GoldMax,
and GoldFinder. A controlled environment was established to study the behavior of each malware, focusing on their techniques
for achieving persistence, lateral movement, and evading detection. The findings contribute to enhancing threat intelligence and
offer insights for improving defenses against similar attacks, highlighting the importance of taking early steps to detect and prevent
advanced persistent threats.

1. Introduction

Solarwinds is a software company which provides management
tools for network and infrastructure monitoring. It also provides
technical services to thousands of organizations around the
world. Solarwinds provides network monitoring services
like Solarwinds Network Performance Monitor (NPM) that
allow organizations to gain real-time insights into the health,
performance, and availability of their IT net- works. By ensuring
network stability and optimal performance, SolarWinds
empowers organizations to deliver uninterrupted services to
their users and customers [1].

SolarWinds offers a range of features like intrusion detection,
vulnerability assessment, log analysis, and security event
correlation to help organizations implement a security
infrastructure. SolarWinds helps organizations fortify their
cloud deployments, identify vulnerabilities, and safeguard their
sensitive data [2].

SolarWinds Orion is a powerful and widely used IT management
and monitoring platform that helps organizations effectively
manage their network infrastructure, systems, and applications.
Designed for both small businesses and large enterprises, Orion
provides a comprehensive suite of tools that streamline various
IT tasks such as performance monitoring,

configuration management, and real-time issue detection. By
collecting and analyzing data from critical components within

an organization’s IT ecosystem, Orion enables IT administrators
to maintain optimal performance across servers, databases,
applications, and network devices.

Orion’s scalability is one of its key selling points, as it can be
tailored to meet the unique needs of diverse environments.
Whether it’s a small company with a few servers or a large
enterprise with complex network architecture, Orion’s
architecture ensures that it can scale accordingly, providing the
same level of in-depth monitoring and control. The platform
supports a wide range of monitoring features, which include
network traffic analysis, server and application monitoring,
database monitoring, and IT asset management. These features
give IT teams the ability to track system performance, spot
potential problems before they affect operations, and improve
the overall health and efficiency of their infrastructure.

A distinguishing factor of SolarWinds Orion is its user-
friendly interface and customizable dashboards, which allow
IT staff to quickly visualize performance metrics and key data
across the entire network. The platform also includes robust
reporting capabilities, providing detailed insights into system
health, usage trends, and potential security vulnerabilities.
These reporting tools make it easier for organizations to make
informed decisions, implement performance improvements, and
troubleshoot issues effectively.

Page 2 of 13American j of math and comput applications

Another feature of Orion is its integration capabilities, enabling
it to unify monitoring tools from various vendors into a single
interface. This centralized view allows IT teams to manage
all aspects of their infrastructure from one place, reducing
the complexity of managing multiple, disparate tools. Orion
can integrate with other SolarWinds products and third- party
applications, streamlining workflows and ensuring a cohesive
approach to network and system management. This integration
fosters a proactive approach, allowing IT teams to stay ahead of
potential disruptions or performance issues [3].

Given its critical role in an organization’s IT ecosystem,
SolarWinds Orion is often deeply integrated into the infrastructure
of many large organizations, including both public and private
sectors. This extensive integration makes it an attractive target
for cyberattacks, as compromising Orion provides attackers with
access to the networks and systems of numerous high-profile
organizations.

2. Related Works

Nair et al. [4] provide a detailed guide on static malware analysis.
This paper outlines the steps used for statically dissecting a
malware. The research paper emphasizes the use of static analysis
tools like PEStudio, PEview, strings, UPX (Ultimate Packer for
Executables) for static malware analysis and for unpacking the
packed malwares.

Guven et al. [5] established a dynamic malware analysis
environment and prepared a dataset containing malicious and
benign network traffic. They extracted 39 features from the traffic
data and used Random Forest and deep learning algorithms to
classify the traffic as either malicious or safe. Their comparison
of the algorithms determined which approach achieved higher
accuracy in identifying malware under such conditions.

Mahmoud et al. [6] proposed a dynamic malware analysis
framework that integrates Sysmon and the Elastic Stack to
create a custom sandbox environment. Using a sample of
2,800 malware instances from VXUnderground, the research
demonstrated the effectiveness of Sysmon and ELK integration
for analyzing malware behavior.

Malik et al. [7] introduced a framework for malware analysis
using a Modern Honey Network (MHN) deployed on a cloud
machine. The environment employs a honeypot and malware
sensor to detect Portable Executable (PE) binaries, extract their
MD5 hashes, and utilize the VirusTotal API for further malware
analysis.

Dutta et al. [8] presented a survey on malware detection methods,
emphasizing the advantages and disadvantages of machine
learning techniques. The paper transitions from traditional
signature-based and behavior-based detection methods to
heuristic-based detection, which incorporates machine learning,

highlighting its efficacy and limitations in addressing evolving
malware threats.

Hammi et al. [9] explored malware detection by analyzing
Windows system calls. The study utilized algorithms such as
ensemble learning, k-Nearest Neighbors (k-NN), Naıve Bayes,
Random Forest, and Decision Tree, training them on malware
samples using custom Python scripts. Comparative analysis
identified the most effective algorithm for detecting malware
based on performance metrics.

Srinivas et al. [10] introduced a methodology for malware
detection using YARA rules. It focused on creating signature-
based rules for identifying and classifying malware families.
By applying these rules to datasets, the study demonstrated
improvements in detection accuracy and the ability to address
variations in malware characteristics.

Yousuf et al. [11] proposed a static analysis-based approach
for detecting malware by extracting multiple features from PE
binaries, such as the DOS header and Windows APIs. The

study concluded that feature extraction from PE binaries alone is
insufficient for reliable malware detection.

3. Environment Setup

The reverse engineering of the malware used in the SolarWinds
compromise is completed in a controlled environment which
was created using two virtual machines (VMs) configured in
an isolated host-only adapter network to ensure security and
prevent unintended external communication.

3.1 Ubuntu VM(Sniffer and Gateway)

The Ubuntu VM was configured to act as a gateway for the
Windows VM, ensuring that all network traffic originating from
the Windows VM passed through it. The configuration allowed
for comprehensive monitoring and analysis of the mal- ware’s
network activity. Key tools and configurations included:

•	 INetSim: Simulated internet services to observe the mal-
ware’s network activity in a controlled environment. It
provided essential responses to network requests, such
as DNS queries, HTTP requests, and other protocols,
enabling detailed analysis of the malware’s behavior.

•	 Wireshark: A network protocol analyzer used to capture
and analyze the traffic generated by the malware. This
tool allowed for in-depth inspection of communication
patterns and potential indicators of compromise.

3.2 Windows VM (Malware Analysis)

The Windows VM served as the primary environment for
conducting malware analysis. The environment was equipped

Page 3 of 13American j of math and comput applications

with specialized tools tailored for static and dynamic analysis,
including:

•	 FLARE VM: A specialized malware analysis toolkit
developed by FireEye. It includes a comprehensive
suite of tools for malware analysis, such as debuggers,
decompilers, and disassemblers, making it suitable for
analyzing complex malware behaviors.

3.3 Network Configuration

The network configurations used for securely analyzing the
malware within a controlled environment are as follows:

•	 Isolated Network: Ensured that malware activity was
contained within the analysis environment, preventing
accidental spread of the malware or its payloads to
other systems.

•	 Gateway Configuration: The Ubuntu VM served as the
gateway for the Windows VM, allowing it to monitor
and control all traffic originating from the Windows
VM. This setup was essential for capturing and
analyzing the malware’s network interactions.

The environment ensured the safe and effective analysis of
malware samples such as SIBOT, Raindrop, GoldMax, and
GoldFinder. Figure 1 shows the Environment setup of the
malware analysis lab.

Figure 1: Malware Analysis Lab Setup.

4. Solarwinds Compromise Overview

The SolarWinds compromise was disclosed in December 2020.
It is one of the most significant cyberattacks in recent history.
It targeted SolarWinds’ Orion platform which is widely used in
IT management and monitoring solution deployed across public
and private sectors globally. The attackers exploited the trusted
software update mechanism of the Orion platform to distribute
malicious updates containing backdoors, thereby infiltrating
numerous organizations [12].

4.1 Attack Overview

The compromise is attributed to the Advanced Persistent Threat
(APT) group APT29, also known as Cozy Bear, which is
linked to the Russian Foreign Intelligence Service (SVR RF).
The attackers gained access to thousands of organizations by
compromising the orion software update mechanism. This access
enabled the execution of highly sophisticated post- exploitation
activities, including data exfiltration, lateral movement, and
installation of additional malware [4].

The attack unfolded as follows:

• Supply Chain Compromise: The attackers injected malicious
code into Orion updates, which SolarWinds distributed to
customers through legitimate channels.

• Post-Compromise Operations: The attackers used additional
malware to ensure persistence, evade detection, and achieve
their operational goals in targeted environments.

4.2 Malware Families Analyzed

This research focuses on the analysis of four key malware
families deployed during the SolarWinds compromise:

• SIBOT: A VBScript-based malware designed to establish
persistence and download additional payloads.

• Raindrop: A malware backdoor loader used to deploy Cobalt
Strike beacons for post-exploitation activities.

• GoldMax: A stealthy backdoor used for covert
communication with command-and-control (C2) servers.

• GoldFinder: A reconnaissance tool designed to trace
network routes to the C2 infrastructure.

Each of these malware families played a critical role in the attack,
showcasing advanced techniques for persistence, evasion, and
lateral movement.

4.3 Impact

The SolarWinds compromise affected over 18,000 organizations
globally. High-profile victims included government agencies,
critical infrastructure entities, and leading private- sector firms.
The attackers only pursued specific high-value targets out of the
affected organizations [13].

The paper provides a detailed analysis of the SIBOT, Raindrop,
GoldMax, and GoldFinder malware families. The focus will be
on their behavior, persistence mechanisms, and techniques for
evading detection. The findings highlight critical vulnerabilities
in supply chain security and emphasize the need for robust
defenses against such advanced threats.

Page 4 of 13American j of math and comput applications

5. Sibot Malware

The section provides a comprehensive analysis of the SI-
BOT malware, its functionality, and its role in the SolarWinds
compromise. We examine its methods of achieving persistence,
downloading additional payloads, and evading detection,
highlighting its impact on the broader attack strategy.

5.1 Introduction

SIBOT is a VBScript-based malware deployed during the
SolarWinds compromise. Its primary role was to establish
persistence on compromised systems and serve as a down loader
for additional payloads. The simplicity and modularity of SIBOT
underscore its design for stealth and efficiency in carrying out its
tasks.

SIBOT relied on lightweight scripts, making it easier to evade
detection mechanisms. By embedding itself into the Windows
Task Scheduler, it ensured that its operations could continue
across system reboots, allowing the attackers to maintain a
foothold in compromised environments over extended periods.

SIBOT’s functionality was often tailored to the target
environment. It leveraged encrypted communications and proxy
configurations to securely download and execute additional
malware payloads.

The analysis explores SIBOT’s techniques for persistence,
payload retrieval, and detection evasion, shedding light on its
pivotal role in the broader SolarWinds compromise.

5.2 Static Analysis

The static analysis of the SIBOT malware began with the
identification of the programming language used to write the
script. Initial inspection showed that the malware was written in
VBScript, a scripting language commonly used for automation
tasks within Windows environments. The script was heavily
obfuscated, a technique often employed by malware authors to
evade detection. The process of static analysis is stated:

• Script Examination: The script was opened in Sublime Text,
which provided an easy-to-read interface to examine the
code. The first step in the process was to identify the most
frequently invoked function within the script. Once the key
function was identified, the next step was to deobfuscate
the code by replacing the obfuscated function and variable
names with meaningful, descriptive identifiers. This process
allowed for a clearer understanding of the script’s logic and
purpose. Then deobfuscated function was responsible for
decoding the strings in the script.

• Decoding Obfuscated Strings: The analyst was able to
reverse the obfuscation and decode several key strings
used within the malware. The function was responsible
for decoding various obfuscated strings, including URLs,

command parameters, and other critical components. The
analyst was able to reveal the original unencrypted values
hidden within the script. The decoding process significantly
improved the legibility of the malware code and provided a
more comprehensive view of its actions.

• Information Gathering: The next step was to examine
the behavior of the script. The analysis revealed that the
malware’s first task was to gather information about the
compromised system. It begins by attempting to retrieve
the Globally Unique Identifier (GUID) of the system’s LAN
connection. If the system does not have a GUID assigned,
the script takes the initiative to generate and assign a new
GUID to the system. This action is crucial as it allows
the malware to uniquely identify the infected machine,
which could be leveraged later in its communication with
command-and-control (C2) servers or for tracking purposes.

• Network Configuration: The malware checks the system’s
network configuration by querying the Windows registry
for proxy settings. The script looks for registry entries
that indicate whether the machine is configured to use a
proxy server for network traffic. If the system is not using a
proxy server, the script terminates its execution, effectively
preventing further actions. This behavior suggests that the
malware is designed to operate in environments where
network traffic can be filtered through a proxy, which may
provide enhanced security or concealment for the attacker.
If a proxy server is present, the malware continues its
execution to carry out further actions.

• GET Request Construction: The script constructs a GET
request to a remote URL. The GET request is routed through
the proxy server, so that all traffic between the infected
machine and the remote server is encrypted and difficult to
detect. The use of encryption for communication between
the malware and its C2 server is likely to avoid detection
by network monitoring systems and security solutions
such as firewalls and intrusion detection systems (IDS).
The malware uses this secure connection to download its
payload from the remote server.

• Payload Decryption: The malware continues to decrypt the
downloaded payload. The payload is encrypted, and the
script contains a function that is specifically designed to
decrypt the payload. The script writes the payload to the
directory of the Windows operating system. The payload is
saved as a .sys file.

• Payload Execution: The malware executes the payload
using rundll32.exe. The malware configures the payload
to run as a scheduled task. This ensures that the malicious
code is executed automatically whenever the system is
restarted, allowing the attackers to maintain foothold on the
compromised machine even after a reboot.

Page 5 of 13American j of math and comput applications

• Self-Deletion: The script deletes itself from the system after
maintaining persistence. The step is designed to cover the
tracks of the malware. By deleting itself, the script makes it
more difficult for incident responders or analysts to trace the
attack back to its source.

The static analysis of the SIBOT malware revealed the structure of
the script designed for stealth and persistence. The script utilized
multiple techniques to evade detection, such as obfuscation,
encrypted communications, and the use of legitimate Windows
utilities to execute the payload. The malware covered its track by
establishing persistence through the creation of scheduled tasks
and its use of proxy servers for encrypted communication.

5.3 Dynamic Analysis

The dynamic analysis of the SIBOT malware confirmed the
findings of the static analysis. The findings of dynamic analysis
are:

• CONNECT Request: It was observed that the script
initiates a CONNECT request to a specified URL. This
behavior is consistent with the malware’s use of proxies to
facilitate encrypted communication for payload re- trieval.
The CONNECT request is a feature of HTTP/1.1 used
to establish a tunnel to a server, often for secure HTTPS
communication through a proxy.

• Execution in Simulated Environment: The analysis was
performed in a controlled environment using INetSim, the
simulated internet service provided by INetSim responded
with a static reply to the CONNECT request. The static reply
did not fulfill the malware’s requirements for downloading
the intended payload. The script terminated its execution
because the payload could not be retrieved, effectively
halting further actions.

The malware would likely have connected to a command- and-
control (C2) server through the proxy to download and execute
its payload in a real world scenerio. The controlled environment
successfully prevented the download of payload and prevented
the risk of getting compromised.

5.4 Evasion Techniques

SIBOT malware exhibits a range of sophisticated evasion
techniques that are critical to its success in maintaining stealth
and avoiding detection in compromised systems. These
techniques are evident from both the static and dynamic analyses
conducted on the malware.

• Obfuscation: SIBOT’s VBScript is heavily obfuscated,
making it difficult to analyze and understand its functionality.
The malware achieves this by using nonsensical function
and variable names and employing functions to encode
or obscure key strings and instructions. This obfuscation
serves multiple purposes:

– It hinders the efforts of security researchers during static
analysis. It complicates the process of extracting meaningful
insights without extensive deobfuscation.

– The script relies on encoded strings for crucial operations, and
only during runtime are these strings decoded using specific
functions within the malware.

• Encrypted Communication: SIBOT leverages proxies to send a
CONNECT request to a remote URL, enabling it to establish an
encrypted tunnel for payload delivery. By relying on encrypted
communication:

– It avoids detection by traditional network monitoring tools that
might flag unencrypted data streams.

– It prevents researchers or monitoring systems from easily
capturing and analyzing the payload during transit.

• Task Scheduling: SIBOT establishes persistence by creating
a scheduled task that executes the downloaded payload
using rundll32.exe. This technique ensures the malware
can survive system reboots and remain active for extended
periods.

• Self-Deletion: After completing its tasks—such as decoding
the payload and establishing persistence, the malware
deletes its own script. This self-deletion removes traces of
its presence.

5.5 Indicators of Compromise

Indicators of Compromise (IoCs) play a critical role in detecting
and responding to malware infections. The Indicator of
Compromise of SIBOT malware are listed.

• URL: The malware establishes a connection to the following
URL: sense4baby.com

• IP Address: SIBOT communicates with the following IP
address: 185.185.117.15

6. Raindrop Malware

This section provides a comprehensive analysis of the Raindrop
malware, its functionality, and its role in the SolarWinds
compromise. We examine its methods of achieving persistence,
downloading additional payloads, and evading detection,
highlighting its impact on the broader attack strategy.

6.1 Introduction

Raindrop is a backdoor loader that employs advanced techniques
to evade detection and execute a Cobalt Strike beacon payload
as shell-code. In most of the variants it masquerades as some
legitimate application using their recompiled source code [14].

To achieve its objective of executing shell-code for post
exploitation activities, the malware employs several evasion

Page 6 of 13American j of math and comput applications

techniques to remain undetected until its payload is fully
executed. These methods include:

• Packing: The payload is packed used a custom packer.

• Encrypted and Compressed Payload: The payload is
encrypted and compressed to obfuscate its contents and
evade static analysis [6].

• Payload Segmentation: The payload is divided into
smaller chunks and loaded into fixed memory locations,
complicating detection and analysis.

• Runtime Decryption and Decompression: The payload is
decrypted and decompressed dynamically at runtie, ensuring
that its malicious content is only revealed during execution.

Variant is similar to its older variant Teardrop which was delivered
in first stage of attack by SunBurst backdoor. From research,
an overall picture of Raindrop captures the essence of aid in
post exploitation activities, including establishing command-
and-control (C2) channels and aiding lateral movement with a
network.

6.2 Static Analysis

This section delves deep into the static analyses of the Raindrop
malware. Inspection of code disassembly, imports, exports,
metadata, and embedded resources. Most important findings
include some from strings, and code disassembly which confirms
its malicious nature as listed below:

• To develop an understanding of the nature of executable, analyst
used PEStudio tool, to gather information about it. It yields that
malware is a TK GUI based PE64 Dynamic Link Library (DLL)
with custom packing detected. Here GUI is a way to masquerade
behind a legitimate process. Some conclusions from this are:

– Packer involved might alter the malware during each packing
operation producing unique binaries that can bypass detection.

– Address Space Layout Randomization (ASLR) and Data
Execution Prevention (DEP) is often enabled to mimic legitimate
software, complicating attempts by analysts to inject shellcode
or payloads during debugging. This demonstrates the malware’s
sophistication and its intent to resist analysis.

• Metadata suggests it has high entropy (7.4). This can mean
file might be encrypted using AES since its ran- domness it
very high or it might even be compressed. Any or both can
be true.

• Version section masquerades fields from legitimate 7- Zip
manifest. This can indicate it might be a recompiled source
code from 7-Zip with added methodologies to conceal its
shell-code. Same manifest string was also found in floss
results.

• Exports section, another key finding we came across is,
despite it being a DLL, there are no DLLMain function
exports. Here there are two main observations:

– While some legitimate DLLs may omit DLLMain, it’s absence
is more common in malware, particularly if the DLL is intended
to hook into existing processes, run in an unconventional way, or
to conceal its entry-points to malicious code.

– Malware leverages on its deceptive 7-zip TK MainLoop
process as a Main DLL export to conceal it’s other DLLMain
entry-point.

• Strings analyzed from floss results were significant and can
give clues towards its malicious nature:

– Strings and Exports found were beginning with Tk which
might indicate TK/Tcl are used for its GUI guise to lay low
under the radar. Malware often uses legitimate-looking functions
or libraries (like Tk in this case) to blend in or masquerade as
something benign.

– Presence of Is Debugger Present might indicate that malware
is trying to evade debuggers to make it more difficult to be
analysed.

– ADVAPI32.dll import indicate, it might be manipulating
registry.

– GetTickCount and Query Performance Counter string are very
significant indicators of sources of entropy for a file. They might
even be used as a seed/key for encryption algorithms as well as
srand random number generators.

– Create Thread, Create Process W, Terminate Process, Get
Current Process Id, Get Current Thread Id, Sleep win32 API’s
string found are indicators that our malware is involved in
significant thread and process manipulations.

– Registry entry strings 23170F69-40C1-278A-1000-
000100020000 confirms out suspicion of it mas- querading a
7-Zip program.

• For further analyses IDA Pro and Cutter were utilized to get
into the flow and working of the file and eventually confirm if it’s
malicious or not. Some of the observations from disassembled
code are as follows:

– UI Event Loop Sleep: At the start, the TK MainLoop
malware initiates a recursive sleep cycle lasting 60 seconds This
is a major Indicator to evade detection by automated sandboxes
and debuggers. This behavior is employed to keep the headless
GUI process running and server as a facade for the 7-Zip
program.

Page 7 of 13American j of math and comput applications

Figure 2: TK Infinite Sleep Event Loop

– Polymorphic Behavior: Following thread trail, ”call
cs:qword 180056E90”, is highly suspicious. This is an
indirect call to the address stored in memory at the location
0x180056E90. Address 0x180056E90 is part of the .data
section and is defined as a pointer to a function. The
dynamically resolved function pointer could be pointing
to malicious code or routines that are injected or altered
during execution. Malware is using this technique to avoid
signature-based detection or to make analysis more difficult.

– Decryption: Thread does extensive xor (A fundamental
operation in many cryptographic algorithms, used for
bitwise mixing of plaintext), bit shifts (Often used in
cryptographic routines to extract or isolate specific bits
in a word.) in each iteration. This might suggest possible
chaining decryption methodology. Block-Like Memory
Usage (e.g. rsp+0F8h+Block) seems to hold a processed
block of data, which is likely reused across iterations. This
is also consistent with cryptographic algorithms, where
temporary buffers are often used for intermediate results.

– Decompression: The combination of VirtualAlloc, data
manipulation (memset, sub * calls), and Virtu- alFree.
Sub functions inside the parent are also involved in
heavy memory manipulation, bit shifts, xor, movzx, mul
instructions which strongly indicates decompresses of data
into a new memory location.

– DLL Injection Thread: When DLLMain is loaded as a
fallback, it creates a new thread, often indicating potential
DLL side-loading. The thread performs health checks on
fixed memory addresses, gathers data chunks, and executes
decryption and decom- pression routines, including XOR-
based decryption with a single-byte key. Byte key is hard-
coded (in our case 0x82).

–

–

Figure 3: Side-loading a Thread Routine as part of entry Fallback

– Possible Payload Execution: At the end after pos- sible
decryption and decompression payload, it is xor with a bye
key. Again VirtualProtect is used to get readwrite access to
mem location and call the shellcode which has been loaded
in rbx after possible decryption and decompression. After
shellcode has been executed, it add sleep and eventually
exits.

– Long Sleeps: In decryption loops after each iteration, thread
sleeps. This could be used to prevent rapid execution and
evade memory protection controls.

Dynamic Analysis of Raindrop yield major conclusions that
displays its malicious behavior. Some of the observations are:

6.3 Dynamic Analysis

• Absence of Conventional Entry Point: It is a PE64 DLL.
Although despite it being a DLL, it cannot be run directly
using rundll32. This is because DLL executable did not
expose DLLMain or any other function that might be
closely related to suspicious thread routine. On running
rundll32 malicious dll.exe,DllMain, it gives error ”Missing
Entrypoint”. This tactic may evade automated detection that
rely on identifying traditional entry points for malicious
DLLs.

• Recursive Sleep Functionality: Static analysis revealed
the malware exports a Tk MainLoop function, induc- ing
infinite loops with long sleeps. When executed via regsvr32,
the process shows no significant changes in the registry, file
system, or network, serving as a decoy to mislead analysis
tools and obscure its true objectives.

• Custom DLL Wrapper for Analysis Executing a mal- ware
DLL requires a victim-like environment. To address this, a
custom DLL wrapper was developed to load the malware and
invoke a function at a specific offset from the base address.
This method bypasses the malware’s obfuscation strategies,

Page 8 of 13American j of math and comput applications

enabling direct analysis of its malicious functionality.

•

Figure 4: Wrapper script to call offset DLLMain

Running it with wrapper, reveals the following observations
from PROCMON:

– It validates existence of various registry keys
for checking if it is a virtual or sandbox environment.
EnablePerProcessSystemDPI, Machine LanguageConfiguration,
PreferredUILanguage, Display keys can be undefined in a
Virtual environment. This can change malware behavior and act
benign where these environments are detected.

– Software Restriction Policy (SRP) is read, specifically
CodeIdentifiers registry for DLL execution. It is suspicious
if DLLs are checking this key since SRP is an administrative
tool used to define policies for controlling the execution of
applications (including DLLs) based on their path, hash,
or publisher. Typically, it’s the responsibility of system
administrators or security management software (like endpoint
protection solutions) to configure and manage SRP settings, not
individual applications or DLLs.

– It creates file (CreateFile) for CRYPTBASE.dll. It
can for one of the two reasons. Firstly, it has advapi32.dll
import as seen from static analyses. advapi32.dll contains
cryptographic APIs. When they are called, Windows internally
loads CRYPTBASE.dll as part of the underlying cryptographic
infrastructure. Secondly it can be due to GetProcAddress from
imports is also a string indicator that malware is dynamically
resolving API functions during execution.

– If these registry keys are not found, malware process
exits instantly after running its health checks. This is quite clear
that it is checking for virtual environment from this. On the
contrary, if we add these variables into the registry manually,
process executes success- fully until the payload is executed and
process exits gracefully.

• Regshot helped us see that on successful execution it is saving

the wrapper state in HKLM\System\CurrentControlSet\
Services\bam

• \State\UserSettings\S-1-5- 21\Device\HarddiskVolume1\
Users\malware- victim\Desktop\wrapper dll.exe. This
might be used on next execution to check for malware state.

• Process hacker, it was observed that the DLL was loaded
into wrapper’s memory as as 7-Zip extension. This is
intended to bypass antivirus engines.

• C2 Connection Attempt: After the loader has success-
fully run and run its payload and exited, it constantly tries
to connect to domain https://www.bigtopweb.com. At the
time of writing this analyses, the domain WHOIS point to
machines in autonomous systems Amazon Inc. It might have
been different at the time of attack and can be suspected as
a C2 server communication to perform its post exploitation
activities since virus total and Kaspersky have flagged this
domain as malicious.

Raindrop is a very sophisticated malware when it comes to
defense evasion. It has static evasion as well as dynamic evasion
techniques that were able to bypass Windows defender as well
as many major vendors. It employs a combination of static as
well as dynamic techniques to fly under the radar until it drops
its shellcode.

6.4 Evasion Techniques

This section covers its evasion techniques in detail.

• Process Masquerading: The malware exhibits process
masquerading by embedding a significant amount of
recompiled source code from the legitimate 7-Zip ap-
plication. This includes references to the XML manifest
associated with 7-Zip, as observed in the binary analysis.

• Debugger Detection and Evasion: The malware actively
checks for the presence of a debugger during its execution.
If a debugger is detected, the malware terminates itself,
effectively avoiding further analysis.

• Architecture and GUI Framework Analysis: Analysis of the
decompiled modules reveals that the malware is a compiled
DLL designed to mimic 7-Zip, leveraging the cross-platform
GUI support of the TK library. This is deduced from the
presence of the TK MainLoop function, the main event loop
in TK-based applications, as well as the usage of ”Tk” in
exported symbols. The presence of DllMain confirms that
the sample is a compiled DLL.

• Event Loop Sleep for Evasion: During initialization in
the TK MainLoop, the malware incorporates a recursive
60-second sleep, likely to evade detection by automated
sandboxes and debuggers. This behavior is consistent with
its use of the TK library to mimic 7-Zip’s user interface.

Page 9 of 13American j of math and comput applications

• Thread Creation at DLL Load: Upon receiving the DLL
PROCESS ATTACH event during DLL loading, the malware
immediately spawns a new thread. While the behavior is not
definitively malicious at this stage, it raises suspicion and
warrants further investigation into DLL sideloading.

• Polymorphic Behavior:

– Dynamic Function Resolution: The malware employs
polymorphic techniques by invoking function pointers stored
in memory. These pointers are populated at runtime within a
potentially malicious thread routine, complicating static analysis.

– Randomized Obfuscation: The malware initializes a
random seed using the GetTickCount function, which retrieves
system uptime. The rand function is subsequently used, possibly
to decrypt blocks of pay- load dynamically. This mechanism
not only supports obfuscation but also introduces polymorphic
traits, making the malware’s behavior less predictable.

• Sleep Behavior in Cryptographic Routines: During payload
decryption, the malware introduces delays by sleeping
between operations. This tactic likely serves to slow down
execution in debugging environments, pre- venting rapid
analysis of cryptographic routines.

• Anti-Sandbox Techniques and Static Analysis Evasion:
Malware employs techniques to detect the presence of a
sandbox environment by querying specific registry keys or
system attributes. The execution of its malicious routines
is contingent upon the absence of these keys, allowing it to
evade detection in controlled analysis settings.

6.5 Indicator of Compromise

Major IOCs identified from static and dynamic analyses for
Raindrop malware from file system and network are:

• S H A 2 5 6 :
be9dbbec6937dfe0a652c0603d4972ba354e83c06b
8397d6555fd1847da36725

• MD5: 0d7a178a0c0a7d2f2cc63e16dad95b45

• C2 Domain: https://bigtopweb.com (TCP)

• Dll extension: 7z.dll

• Dll extension: 7z.dll.2.Manifest

• Reg Key Access: HKLM\System\Current Control Set\
Control\Srp\GP\DLL

• Reg Key Access: HKLM\Software\Policies\Microsoft\
Windows\Safer\CodeIdentifiers

7. Goldmax Malware

This section provides a comprehensive analysis of the GoldMax

malware, focusing on its functionality, techniques for achieving
persistence, and methods for evading detection.

7.1 Introduction

GoldMax is a backdoor malware written in the Go programming
language and deployed during the SolarWinds compromise. It
is associated with SUNSHUTTLE malware due to similarities
in behavior and functionality but the two are distinct tools used
in related contexts. GoldMax is designed to enable long-term
persistence, communication with command- and-control (C2)
servers, and flexible operational capabilities for attackers.

GoldMax employs techniques such as encrypted communication,
time-based execution delays, and traffic mimicking to blend
into legitimate network activity. These features make it highly
effective at evading detection and analysis. The malware provides
attackers with remote access, enabling com- mand execution,
file transfer, and the deployment of additional payloads.

This section examines the technical aspects of GoldMax,
including its functionality, persistence mechanisms, evasion
strategies, and its impact on targeted environments during the
SolarWinds supply chain attack. Understanding its capabilities
sheds light on the tactics employed by threat actors in this
operation.

7.2 Static Analysis

Static analysis of the GoldMax malware revealed several
insights into its design, functionality, and potential objectives.
The analysis began with the identification of various strings
embedded within the binary. Key findings included strings for an
HTTP GET request and an RSA public key, suggesting the use
of encryption, potentially for securing network communications
or payload delivery. Several cryptographic functions were also
identified. The findings are stated:

• Malware Unpacked State: Analyzing the strings high-
lighted that the malware was written in GO programming
language. Examination of the binary’s virtual size and raw
data size revealed no evidence of packing, indicating the
malware was not packing using traditional packers. This
finding indicated that the malware is ready to analyze and
there is no need for packing. Analyzing the imports table
revealed that many functions such as WriteFile, VirtualAlloc,
VirtualQuery, and VirtualFree are being used. Which could
point to the malware’s capability to manipulate memory and
files.

• Advanced Threading Library: Application Programming
Interfaces (APIs) like CreateThread, Sus- pendThread,
and ResumeThread suggested the use of advanced
threading techniques to manage its operations. Dynamic
library loading like LoadLibraryA, LoadLibraryW, and
GetProcAddress were used to load and re- solve functions

Page 10 of 13American j of math and comput applications

dynamically, which complicates detection in static analysis.
Functions such as AddVectoredEx- ceptionHandler,
SetUnhandledExceptionFilter, and Set- WaitableTimer
were identified as potentially suspicious, as they are often
associated with evading debugging, achieving persistence,
and manipulating system behavior.

• Environment Fingerprinting: Code analysis revealed that the
malware was using HardwareAddr.String which suggested
that the malware was reading the MAC address of the host
system. This behavior is commonly associated with attempts
to fingerprint the environment, such as detecting virtualized
environments in which the malware is being executed. The
malware’s retrieval of the MAC address likely serves to
identify analysis environments, such as sandboxes or virtual
machines, and terminate its operations if such environments
are detected.

• Session key Request: The malware requested a session key
which could be related to securing communication channels
with its command-and-control (C2) server or managing
encryption for subsequent payloads. Two code blocks were
identified as mechanisms for placing the malware in a
hibernation state for randomized periods. This mechanism
is used to evade detection and analysis, as the delays make
its behavior less consistent and more challenging to monitor.

• Cryptographic Use with RSA: The presence of cryptographic
functions and the RSA key indicates the use of encryption
for data protection. The encryption likely secures C2
communications, ensuring confidentiality and integrity,
while also preventing interception by defenders. GoldMax
ensures secure and private communication between the
compromised host and its C2 server by leveraging RSA
keys and cryptographic functions. This not only protects
sensitive data from interception but also conceals the nature
of the malware’s activities from network defenders.

• Beaconing for Persistent C2 Communication: Gold- Max
exhibited a beaconing mechanism, repeatedly trying to
contact its C2 server. This behavior is typical for establishing
persistent communication channels, allowing attackers
to issue commands, exfiltrate data, or deploy additional
payloads. Repetition of C2 communication attempts ensures
that malware can reliably reconnect with its operators, even
in the face of network disruptions or environment changes.
This mechanism also allows attackers to maintain control
over the compromised system for extended periods.

The static analysis findings are verified by doing dynamic
analysis of the GoldMax malware.

7.3 Dynamic Analysis

The dynamic analysis of the GoldMax malware provided
significant information on its runtime behavior, network activity,

file manipulation, and registry modifications. The observations
highlight the sophistication of the malware in maintaining
persistence, evading detection, and communicating with its
command-and-control (C2) infrastructure. The techniques used
by GoldMax malware to evade detection are as follows:

• Communications with Command-and-Control Server: The
malware-initiated DNS requests to megatoolkit.com, which
is likely the C2 server used for communication and control.
GoldMax engaged in repeated TCP com- munication over
ports 443 and 80, indicating the use of HTTPS and HTTP
protocols. These connections involved full TLS handshakes
followed by periodic data exchanges every 8-10 seconds,
likely serving as a beaconing mech- anism or a means of
sending system status information to the C2 server.

• Encrypted Communications via TLS: The TLS hand- shakes
and subsequent application data transmission in- dicate
that the malware uses encryption to protect its network
communications, ensuring confidentiality and integrity
against interception.

• Creation of Encrypted Configuration File: GoldMax created
a new file named runlog.dat.tmp in the same directory as its
executable right after the execution of the malware. The file
contained a single line of encrypted data, possibly used to
store configuration details, a system fingerprint, or a one-
time initialization value.

• Registry Key Deletion: The deletion of the multiple registry
keys indicates an attempt to disable legitimate system
policies, potentially to prevent system hardening measures,
alter authentication rate limits, potentially bypass login
restrictions or brute-force protections, to gather intelligence
about user interactions or frequently accessed files. Removal
of entries related to OneDrive and BITS, along with
modifications to Windows Update configurations, suggests
an effort to disrupt legitimate update mechanisms. This
could prevent system patches from being applied or allow
the malware to replace updates with malicious payloads.

• Registry Manipulation for Persistence: The interaction with
the advapi32.dll library indicates registry manipulation,
which is likely to disable security policies or alter
configurations to maintain persistence.

• Payload Encryption: The use of cryptographic functions
points to encrypted C2 communications or data storage,
ensuring that communications remain confidential. These
functions may be used to encrypt payloads or credentials
locally.

• Network Communication Through DNS: The use of
dnsapi.dll and wsock32.dll libraries allows network
communications, confirming the malware’s reliance on
DNS and socket-based interactions for contacting the C2

Page 11 of 13American j of math and comput applications

infrastructure.

• Persistence: Interaction with sysmain.sdb database suggest
the use of Windows Application Compatibility features to
establish persistence. Manipulation of sdb extension files is
a known tactic for bypassing standard execution restrictions
or injecting malicious behaviors into legitimate processes.

• Hibernation Mechanisms for Evasion: The malware likely
incorporates hibernation mechanisms, delaying execution
or communication for random intervals. This behavior
reduces the likelihood of detection by automated systems,
which often rely on consistent patterns.

• Registry Manipulations for Credential Theft: The use of
registry manipulations and cryptographic libraries indicates
attempts at credential theft or privilege escalation, enabling
malware to access restricted areas of the system.

• Heartbeat Communication: The periodic communication
with the C2 server serves as a heartbeat, signaling the
malware’s continued presence and operational status. This
enables attackers to issue commands, deploy additional
payloads, or exfiltrate data.

7.4 Evasion Techniques

GoldMax malware exhibits a range of sophisticated evasion
techniques that are critical to its success in maintaining stealth
and avoiding detection in compromised systems.

• Beaconing Mechanism with Unpredictable Intervals:
GoldMax communicates with its C2 server by performing
periodic TLS handshakes and sending data at intervals of
8-10 seconds. The beaconing mechanism is unpredictable,
making it harder for automated tools to detect the regular
patterns often associated with malicious activity.

• Hibernation to Evade Detection: The malware includes
functionality to enter a hibernation state, where it pauses
its execution for random periods of time. This technique
reduces the likelihood of detection by automated sandbox
environments that monitor malware behavior for only a
limited duration.

• MAC Address Retrieval: The use of functions like
HardwareAddr.String to retrieve the system’s MAC ad-
dress could indicate checks for virtualized or sandboxed
environments.

• Encrypted C2 Communications with TLS: All
communications with the C2 server are encrypted using
TLS. This encryption ensures that network monitoring
tools cannot decipher the content of the communication,
obscuring any commands or data being exfiltrated.

7.5 Indicator of Compromise

The indicator of compromise identifed during the analysis of
GoldMax malware are:

• Cryptographic Libraries: crypto/aes, crypto/rc4, and crypto/tls.

• Key strings: runlog.dat, HardwareAddr.String.

• API calls: VirtualAlloc and LoadLibraryA.

• C2 Communication: megatoolkit.com.

8. Goldfinder Malware

This section provides a detailed analysis of the GoldFinder
malware. This section focuses on the structure, functionality and
the evasion techniques used by the malware.

8.1 Introduction

GoldFinder is a reconnaissance malware linked to the
SolarWinds Compromise. It is deployed to test the network
environment of targeted machines. It is designed to evaluate
network connectivity and routing, enabling attackers to under-
stand the machine’s network setup and the presence of proxies,
firewalls, or other intermediaries.

8.2 Static Analysis

Static analysis of the GoldFinder malware revealed that it is
packed. It indicates that the malware has obfuscated its internal
structure and functionality. When a malware is packed the true
code is hidden until the malware is unpacked at runtime. This is
a common evasion technique used by malware to delay detection
and analysis by security tools.

In the code review it was observed that the malware is configured
to make HTTPS requests to google.com. This action indicates that
the malware is testing network connectivity for testing purposes.
The malware verifies network connectivity and determines the
presence or configuration of security mechanisms like proxies
or firewalls. The malware can infer the following by analyzing
responses of requests:

• Proxy Interception: If a proxy intercepts the request,
additional headers like Via or X-Forwarded-For may be
added, which the malware can analyze.

• Defense Mechanism: The malware can deduce the presence
of network-level filtering or blocking mechanisms if
network packets are modified or filtered.

Detecting traffic with a firewall is challenging because the
malware generates innocent-looking traffic.

8.3 Dynamic Analysis

The findings of the GoldFinder malware are as follows:

• File Creation: The malware creates a file named loglog.txt
in the same directory where the malware is executed. The

Page 12 of 13American j of math and comput applications

malware initiates an HTTPS request to google.com. The
malware generates legitimate traffic to avoid suspicion and
bypass network defenses such as firewalls and intrusion
detection systems (IDS).

• Logging: The response of the generated traffic is written into
the loglog.txt file including status code and other metadata.
This behavior indicates that the malware is performing
reconnaissance to assess the network environment. By
analyzing the logged response, the malware can deduce
whether the machine has an active internet connection or
not.

8.4 Evasion Techniques

The following evasion techniques were noticed during the
analysis phase:

• Packed Malware: The malware is initially packed. It means
that the inner functionality is obfuscated and true code is
hidden until the malware is unpacked at runtime.

• Legitimate Traffic: Malware generates legitimate traffic
bypassing security controls.

8.5 Indicator of Compromise

Indicators of Compromise are used to identify the malware and
make rules to filter it. Following indicators of compromise were
identified in GoldFinder malware:

• Executable Packer: Ultimate Packer for Executables (UPX).

• File Creation: loglog.txt.

9. Conclusion

The activities of GoldFinder, GoldMax, Raindrop, and Sibot
represent a coordinated cyber operation that demonstrates
the strategies used in advanced persistent threat campaigns.
Each malware had a distinct role in achieving the goals of the
SolarWinds supply chain compromise. GoldFinder focused on
reconnaissance to test network defenses and identify security
mechanisms. GoldMax operated as a command-and-control
backdoor that maintained long-term access to compromised
systems. Raindrop acted as a loader to facilitate lateral move-
ment and deploy additional payloads. Sibot served as a down-
loader to establish persistence and execute further malicious
components.

GoldFinder was a reconnaissance tool designed to evaluate
network configurations, identify the presence of security
mechanisms, and identify the presence of internet connection.
It assessed defenses such as firewalls and proxies by generating
traffic that appeared harmless and directing it to legitimate sites
like Google.com. The tool logged the responses of the requests
and provided critical insights into the network environment. The
reconnaissance activity was a necessary step in facilitating the

deployment of more malware programs of the operation.

GoldMax was a command-and-control backdoor. It secured
communications through encryption to prevent detection during
data transmission. The backdoor used beaconing to provide
updates on system status and ensured its presence through
persistence mechanisms that allowed it to remain operational
on compromised systems. The modular structure of GoldMax
enabled the attackers to deploy commands dynamically and
exfiltrate data as required. The functionality highlighted the use
of sophisticated backdoor techniques to coordinate and carry out
malicious actions across a wide array of victims.

Raindrop operated as a loader and facilitated lateral movement
for delivering additional payloads. It allowed the attackers
to expand their reach by targeting more systems within the
compromised network. The functionality allowed the attackers
to strengthen foothold and exploit the inter-connectivity of the
organization. Due to the facilitation of lateral movement of
malicious code, Raindrop highlighted the cascading effects of
the campaign, where the compromise of one system could lead
to widespread disruptions across the entire network.

Sibot is a script-based downloader. It utilized Windows Script
Host to execute its payloads so that its activities remain less
suspicious and less likely to trigger security defenses. Sibot
was responsible in retrieving and executing additional malware
components within the compromised environment.

The malware components represent a carefully planned and
executed campaign that targeted government agencies and critical
infrastructure entities along with private-sector organizations
on a global scale. The SolarWinds compromise enabled by
the collection of malware tools demonstrates the potential for
supply chain attacks to bypass traditional security measures
and infiltrate highly secure environments. The attackers use of
legitimate traffic patterns and encryption techniques ensured
the success of the operations while making detection and
remediation efforts more difficult.

The campaign serve as a stark reminder of the vulnerabilities
present in modern supply chains and the critical need for
advanced security measures. Organizations must prioritize the
implementation of comprehensive monitoring solutions, incident
response strategies, and regular assessment of risks to mitigate
the threats posed by such advanced campaigns. The SolarWinds
incident shows how important it is for organizations to work
together to improve cybersecurity. Sharing information and
building strong defenses as a group can help tackle the growing
challenges in today’s complicated digital world.

References

1. SolarWinds, SolarWinds Network Performance Monitor
Datasheet, Jul. 2023

Page 13 of 13American j of math and comput applications

2. SolarWinds, SolarWinds Security Event Manager
Datasheet, July 2023.

3. SolarWinds, Orion Platform Datasheet, 2024.

4. R. Nair, K. Dodiya, P. Lakhalani, and K. Dodiya, “A Static
Approach for Malware Analysis: A Guide to Analysis
Tools and Techniques,” International Journal for Research
in Applied Science and Engineer- ing Technology, vol.
11, no. 12, pp. 1451–1474, Dec. 2023. DOI: 10.22214/
ijraset.2023.57649.

5. M. Guven, “Dynamic Malware Analysis Using a Sandbox
Environment, Network Traffic Logs, and Artificial
Intelligence,” International Journal of Computational and
Experimental Science and Engineering, vol. 10, no. 3, Sept.
2024. DOI: 10.22399/ijcesen.460.

6. R. V. Mahmoud, M. Anagnostopoulos, S. Pastrana, and J.
M. Pedersen, ”Redefining Malware Sandboxing: Enhancing
Analysis Through Sys- mon and ELK Integration,” IEEE
Access, vol. PP, no. 99, pp. 1–1, Jan. 2024,

7. M. Malik and M. B. Rahardjo, ”A Framework for Collecting
and Analysis PE Malware Using Modern Honey Network
(MHN),” in Proc. 8th Int. Conf. Cyber and IT Service
Management (CITSM), Pangkal Pinang, Dec. 2020, pp.
1–5, doi: 10.1109/CITSM50537.2020.9268810.

8. V. Dutta, M. Raghavendra, and R. Ramesh, ”Machine
Learning in Malware Detection: A Survey of Analysis
Techniques,” Int. J. Adv. Res. Comput. Commun. Eng.,

vol. 12, no. 4, pp. 204–208, Apr. 2023, doi: 10.17148/
IJARCCE.2023.12435.

9. B. Hammi, J. Hachem, A. Rachini, and R. Khatoun,
”Malware Detection Through Windows System Call
Analysis,” in Proc. 9th Int. Conf. Mobile Secure Services
(MOBISECSERV), Miami, USA, Nov. 2024, pp. 1–7, doi:
10.1109/MobiSecServ63327.2024.10759991.

10. N. Srinivas, ”Detection of Malware by Using YARA Rules,”
in Proceedings of the 9th IEEE International Conference on
Cybersecurity and Malware Analysis (CYBERMA), 2024,
DOI: 10.1109/CY- BERMA.2024.10549308.

11. M. I. Yousuf, I. Anwer, A. Riasat, and S. Kim, ”Windows
malware de- tection based on static analysis with multiple
features,” PeerJ Computer Science, vol. 9, no. 1, p. e1319,
Apr. 2023. DOI: 10.7717/peerj-cs.1319.

12. SolarWinds Compromise, Campaign C0024 — MITRE
ATT&CK®, attack.mitre.org. https://attack.mitre.org/
campaigns/C0024/

13. Newsweek, ”SolarWinds Orion Software
Cyberattack: Hack Victims, Targets List,” Dec. 22,
2020. [Online]. Available: https://www.newsweek.com/
solarwinds-orion-software-cyberattack- hack-victims-
targets-list-1555840. [Accessed: Nov. 15, 2024].

14. Security.com, SolarWinds Raindrop Malware:
Understanding the Threat.

Copyright: ©2025 Syed Ahmad Maaz. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

