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1.	 Introduction

A surface link is a closed, possibly disconnected, oriented 
surface F smoothly embedded in the 4-sphere S4, and it is called 
a surface knot if F is connected. If F consists of 2-spheres Fi (i 
= 1, 2, . . . , r), then F is called a sphere-link (or an S2-link) of r 
components. It is shown that a surface-link F is a trivial surface-
link (i.e., bounds disjoint handlebodies in S4) if the fundamental 
group π1(S

4 \ F, x0) is a meridian-based free group, [1-3]. A 
surface-link F is ribbon if F is obtained from a trivial S2-link O 
in S4 by surgery along a smoothly embedded disjoint 1-handle 
system hO on O, [4-7]. A surface-link F in the 4-sphere S4 is 
free if the fundamental group π1(S

4 \ F, x0) is a (not necessarily 
meridian-based) free group. In this paper, four different proofs 
of the following Free ribbon lemma and its generalization to a 

general free surface-link are explained.

Free ribbon lemma

Every free S2-link in S4 is a ribbon S2-link.

Free ribbon lemma leads to the following conjectures: Poincarѐ 
conjecture, [8-11]. J. H. C. Whitehead asphericity conjecture for 
aspherical 2-complex, [12-15]. Kervaire conjecture on group 
weight, [16-20]. The first proof is given [13]. For convenience, 
an outline of the first proof is explained here.

First proof of Free ribbon lemma. Let Li (i = 1, 2, . . . , r) be the 
components of a free S2-link L in S4. By a base change of the 
free fundamental group π1(S4 \ L, x0), take a basis xi (i = 1, 2, . 
. . , r) of π1(S4 \ L, x0) inducing a meridian basis of L in H1(S4 \ 
L; Z), [20]. Let Y be the 4-manifold obtained from S4 by surgery 
along L, which is diffeomorphic to the connected sum of r copies 
S1 × S3 (i = 1, 2, . . . , r) of S1 × S3, [13,21]. Under a canonical 
isomorphism π1(S4 \ L, x0) → π1(Y, x0), the factors S1 × pi (i = 
1, 2, . . . , r) of S1 × S3 (i = 1, 2, . . . , r) with suitable paths to the 
base point X0 represent the basis xi (i = 1, 2, . . . , r). Let ki (i = 1, 
2, . . . , r) be the loop system in Y produced from the components 
Li (i = 1, 2, . . . , r) by the surgery. By using the fact that any 
homotopy deformations of ki (i = 1, 2, . . . , r) in Y do not change 
the link type of the surface-link L in S4, the loop system ki (i = 1, 
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2, . . . , r) is homotopically deformed in Y so that the surface-link 
L in S4 obtained from the deformed loop system ki (i = 1, 2, . . . , 
r) by back surgery is a ribbon surface-link in S4, completing the 
proof of Free ribbon lemma.

To explain the second and third proofs of Free ribbon lemma, the 
notion of an O2-handle basis of a surface-link is needed, [1,22]. 
An O2-handle on a surface- link F in S4 is a pair (D × I, D′ × I) 
of 2-handles D × I, D′ × I on F in S4 which intersect orthogonally 
only with the attaching parts (∂D) × I, (∂D′) × I to F, so that the 
intersection Q = (∂D) × I ∩ (∂D′) × I is a square. Let (D × I, D′ × 
I) be an O2-handle pair on a surface-link F. Let F(D × I) and F(D′ 
× I) be the surface-links obtained from F by the surgeries along 
D × I and D′ × I, respectively. Let F(D × I, D′ × I) be the surface-
link which is the union δ ∪ Fc

δ of the plumbed disk

                

The surface-links Fc
δ  F(D × I), F (D′ × I) and F (D × I, D′ × I) are 

equivalent surface- links, [1]. An O2-handle basis of a surface-
link F is a disjoint system of O2-handle pairs (Di × I, D′ × I) (i = 
1, 2, . . . , r) on F in S4 such that the boundary loop pair system 
(∂Di, ∂D′) (i = 1, 2, . . . , r) of the core disk system (Di, D′i) (i 
= 1, 2, . . . , r) of (Di × I, D′i × I) (i = 1, 2, . . . , r) is a spin loop 
basis for F in S4, which is a system of a spin loop basis of every 
component Fi of F. Note that there is a spin loop basis for every 
surface-knot in F, [3]. In this paper, for simplicity, an O2-handle 
basis (Di × I, D′ × I) (i = 1, 2, . . . , r) for F is denoted by (D × I, 
D′ × I). The surgery surface-link of F by (Di × I, D′ × I) (i = 1, 
2, . . . , r) is denoted by F (D × I, D′ × I). The following theorem 
is shown for the second and third proofs of Free ribbon lemma.

Theorem 1.1

For every free ribbon surface-link F in S4, there is an O2-handle 
basis (D × I, D′ × I) on F in S4 such that D × I belongs to the 
1-handle system of the ribbon surface-link F.

The second proof of Free ribbon lemma is explained as follows.

Second Proof of Free Ribbon Lemma

Let L be a free S2-link. Then there is a ribbon surface-link F such 
that the fundamental group π1(S

4 \ F, x0) is isomorphic to the 

free fundamental group π1(S
4 \ L, x0) by a meridian-preserving 

isomorphism [23]. By Theorem 1.1, the surgery surface-link 
L′ = F (D×I, D′×I) is a ribbon S2-link, [1, 22]. Then there is a 
meridian-preserving isomorphism π1(S

4 \ L′, x0) → π1(S
4 \ L, x0) 

on free groups, which implies that L′ is equivalent to L, [13,24]. 
Thus, L is a ribbon S2-link, completing the proof of Free ribbon 
lemma.

The third proof of Free ribbon lemma is related to a Wirtinger 
presentation of a free group. A finite group presentation (x1, x2, 
. . . , xn| R1, R2, . . . , Rm) is a Wirtinger presentation if Rj = 
WjxsjWj

−1xtj
−1 for some indexes sj, tj  in {1, 2, . . . , n} for every 

j (j = 1, 2, . . . , m).  The relator Rj is a commutator relation 
if xsj = xtj .  It is well-known that a Wirtinger presentation of 
a finitely presented group G with H1(G; Z) =Zr is always 
equivalent (without changing the gerenating set) to a Wirtinger 
presentation P such that the Wirtinger presentation P′ obtained 
by removing all the commutator relations from P has deficiency 
r. Such a Wirtinger presentation P is called a normal Wirtinger 
presentation. The following corollary is obtained from Theorem 

1.1.

Corollary 1.2

If a free group G of rank r has a normal Wirtinger presentation P, 
then G has the Wirtinger presentation P′ of deficiency r obtained 

from P by removing all the commutator relations.

Proof of Corollary 1.2 assuming Theorem 1.1

Let P = (x1, x2, . . . , xn| R1, R2, . . . , Rm) be a normal Wirtinger 
presentation of a free group G of rank r such that the relators Rj 
(n − r + 1 ≤ j ≤ m) are the commutator relations. Let O be a trivial 
S2-link of n components in S4 such that the meridian basis of the 
free fundamental group π1(S

4 \ O, x0) are identified with xi (i = 
1, 2, . . . , n). Let hj (1 ≤ j ≤ m) be the 1-handles on O indicated 
by the relators Rj (1 ≤ j ≤ m). By the van Kampen theorem, the 
ribbon surface-link F in S4 obtained by surgery along hj (1 ≤ j ≤ 
m) has the normal Wirtinger presentation P of the fundamental 
group π1(S

4 \ F, x0) with the meridian generators set {x1, x2, . . 
. , xn}, [24,25]. Let L be the ribbon surface-link obtained from 
O by surgery along the 1-handles hj (1 ≤ j ≤ n − r), which is a 
ribbon S2-link of r components, The fundamental group π1(S

4 \ 
L, x0) has the Wirtinger presentation P′ of deficiency r obtained 
from P by removing all the commutator relations. By Theorem 
1.1, the 1-handles hj (n − r + 1 ≤ j ≤ m) are trivial 1-handles on O, 
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so that π1(S
4 \ L, x0) is isomorphic to π1(S

4 \ F, x0) by a meridian-
preserving isomorphism. This completes the proof of Corollary 
1.2 assuming Theorem 1.1.

The author has published a paper on another proof of Free 
ribbon lemma, which this paper complements, [23]. The third 
proof of Free ribbon lemma is nothing but the proof of the paper 
except for adding to it the assertion of Corollary 1.5 which was 
missing from it. For convenience, an outline of the third proof 
is explained here.

Third Proof of Free Ribbon Lemma

Let L be a free S2-link of r components. Since the fundamental 
group G = π1(S

4 \ L, x0) is a free group with H1(G; Z) = Zr and H2(G; 
Z) = 0, there is a normal Wirtinger presentation P of G whose 
generator set comes from meridians of L in S4, [23,26]. Note 
that there is also another method to find such a normal Wirtinger 
presentation P using a normal form of L in S4, [4,24,25,27]. Let 
L′ be a ribbon S2-link given by the Wirtinger presentation P′ 
obtained from P by removing all the commutators. By Corollary 
1.2, there is a meridian-preserving isomorphism π1(S

4 \ L′, x0) 
→ π1(S

4 \ L, x0), so that L′ is equivalent to L. Thus, L is a ribbon 
S2-link, completing the proof of Free ribbon lemma.

The fourth proof of Free ribbon lemma is given by a direct proof 
of the following theorem.

Theorem 1.3

Every free surface-link F in S4 is a ribbon surface-link in S4.

Fourth proof of Free ribbon lemma

It is obtained by restricting F to every free S2-link, completing 

the proof of Free ribbon lemma.

Thus, after the proofs of Theorems 1.1 and 1.3, there are four 

different proofs of Free ribbon lemma.

To generalize the free ribbon lemma to a free surface-link, 

the notion of a stabilization of a surface-link is needed, 

[1,22]. A stabilization of a surface-link L is a connected sum 

of L and a system of trivial torus-knots Tk (k 

= 1, 2, . . . , s).

By granting s = 0, a surface-link L itself is regarded as a 

stabilization of L. Free ribbon lemma is generalized to a general 

free surface-link as follows.

Corollary 1.4. Every free surface-link F in S4 is a stabilization of 

a free ribbon S2-link L in S4.

Proof of Crollary 1.4 assuming Theorems 1.1 and 1.3. Theorem 

1.1 implies that every free surface-link F is a stabilization of 

a free S2-link L, [1]. By Free ribbon lemma, the free S2-link 

L is a ribbon S2-link. This completes the proof of Crollary 1.4 

assuming Theorems 1.1 and 1.3.

It is shown that an S2-link L is a sublink of a free S2-link if 

and only if L is a ribbon S2-link, [13]. The following corollary 

generalizes this property to a general surface-link.

Corollary 1.5. A surface-link L in S4 is a sublink of a free surface-

link F in S4 if and only if L is a stabilization of a ribbon S2-link 

in S4.

Proof of Corollary 1.5 assuming Theorem 1.3. If L is a sublink of 

a free surface-link F , then L is a stabilization of a ribbon S2-link 

since every free surface-link is a stabilization of a free ribbon 

S2-link by Corollary 1.2. Conversely, if L is a stabilization of 

a ribbon S2-link, then L is a sublink of a stabilization of a free 

ribbon S2-link which is a free surface-link F since every ribbon 

S2-link is a sublink of a free S2-link. This completes the proof of 

Corollary 1.5 assuming Theorem 1.3.
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2. Proofs of Theorems 1.1 and 1.3.

Let F be a free surface-link in S4 with components Fi (i = 1, 2, . 

. . , r). Let N(F ) =  be a tubular neighborhood 

of Fi in S4 which is a trivial normal disk bundle F 

× D2 over F, where D2 denotes the unit disk of complex numbers 

of norm ≦ 1. Let E = E(F ) =cl(S4 \ N(F )) be the exterior of F in 

S4. The boundary ∂E = ∂N(F) = of the exterior E 

is a trivial normal circle bundle over F = . Identify ∂N(Fi) 

=Fi × S1 for S1 = ∂D2 such that the composite inclusion Fi × 1 → 

∂N(Fi) → cl(S4 \ N(Fi)) induces the zero-map in the integral first 

homology. The following lemma uses the assumption that the 

fundamental group π1(E, x0) is a free group of rank r and the fact 

that the first homology group H1(E; Z) is a free abelian group of 

rank r with meridian basis.

Lemma 2.1

The composite inclusion Fi × 1 → ∂N(Fi) → E is null-homotopic 

for all i.

Proof of Lemma 2.1

Since ∂N(Fi) = Fi × S1, the fundamental group elements between 
the factors Fi × 1 and qi × S1 are commutive. Let ai (i = 1, 2, . . . , 
r) be embedded edges with common vertex x0 in E such that ai \ 

{x0} (i = 1, 2, . . . , r) are mutually disjoint and 
for a point pi of Fi × 1. The surface Fi × 1 in ∂N(Fi) = Fi × S1 is 
chosen so that the inclusion Fi × 1 → cl(S4 \ N(Fi)) induces the 
zero-map in the integral first homology. Since H1(E; Z) is a free 
abelian group of rank r with meridian basis and π1(E, x0) is a 
free group of rank r, the image of the homomorphism π1(ai ∪ Fi 

× S1, x0) → π1(E, x0) is an infinite cyclic group generated by the 
homotopy class [ai ∪ pi × S1]. This implies that the inclusion Fi 
× 1 → E is null-homotopic. This completes the proof of Lemma 
2.1. 

By using the free group π1(E, x0) of rank r, let 

        

be a connected graph with a degree one vertex x0 in the interior 

Int(E) of E consisting of embedded edges ai (i = 1, 2, . . . , r) with 
the common base point x0 and disjoint embedded circles Ci (i = 
1, 2, . . . , r) such that 

(1) the half-open edges ai \ {x0} (i = 1, 2, . . . , r) are mutually 
disjoint and ai ∩ Cj) = vi, a point in Ci for every i, 

(2) The inclusion i : (Γ, x0) → (E, x0) induces an isomorphism i# 

: π1(K, x0) → π1(E, x0), and 

(3) The homology class [pi × S1] = [Ci] in H1(E; Z) for all i.

In fact, by (2), the homotopy classes [ai ∪ Ci] (i = 1, 2, . . . , 
r) form a basis of the free group π1(E, q0). (3) is obtained by a 
base change of the free group π1(E, x0), [20]. Since Γ is a K(π, 
1)-space, there is a piecewise-linear map f : (E, x0) → (Γ, x0) 
inducing the inverse isomorphism f# = (i#)

−1 : π1(E, q0) → π1(Γ, 
q0), and by the homotopy extension property, the restriction 
of f to Γ is the identity map, [29]. The restriction of f to ∂E is 

homotopic to the composite map 

such that the first map F × S1 → × S1 is induced 
from the constant map and the second map  

is defined by the map f . By using a 
boundary collar of ∂E in E, assume that the piecewise-linear 
map f : (E, x0) → (Γ, x0) defines the map g : ∂E → Γ. For a 
non-vertex point pi of Ci, the preimage (f )−1(pi) is a bi-collard 
compact oriented proper piecewise-linear 3-manifold in E. Let 
Vi be the connected component meeting Ci at the point pi in E. 
The boundary ∂Vi is the disjoint union Pi(F) of mij parallel copies 
mijFj of Fj × 1 for all j (j = 1, 2, . . . , r) in S4, where mii is an odd 
integer and mij with i /= j is an even integers. Let P (F) = ∪r Pi(F) 
be the surface-link in S4. Let hi be a disjoint 1-handle system on 
Pi(F) embedded in Vi such that the surface Pi(F ; hi) obtained from 
Pi(F) by surgery along hi is connected and the genus of Pi(F;hi) 
is equal to the total genus of Pi(F). Assume that one copy of 
the parallel miiFi of Fi is identified with Fi and just one 1-handle 
of hi attaches to Fi. Let P (F ; h) =  (F;hi) be a 
surface-link in S4. By further taking a disjoint 1-handle system 
h′ on Pi(F,hi) embedded in Vi, the closed surface Pi(F ; hi, h′) 
obtained from Pi(F ; hi) by surgery along h′ bounds a handlebody 
in Vi, so that the surface-link P (F ; h, h′) =  (F;hi,h′) 
is a trivial surface-link in S4. Since the compact 4-manifold E′ 
obtained from E by splitting along ∪ri=1 Vi is simply connected, 
the 1-handle system h′ = is a trivial 1-handle system 
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on the surface-link P (F;h) in S4, [3,28].  Thus, the surface-link P 
(F ; h) is a trivial surface-link in S4, [1,2]. The proof of Theorem 
1.1 is done as follows.

Proof of Theorem 1.1

A ribbon surface-link F is obtained from a trivial S2-link O in 
S4 by surgery along a disjoint 1-handle system hO on O, so that 
the surface-link P(F) of a free a ribbon surface-link obtained 
from a trivial S2-link P(O) in S4 by surgery along a disjoint 
1-handle system P(hO) on P (O). Let VP(F) is a SUPH system 
for the ribbon surface-link P(F) in S4, namely a multi-punctured 
handlebody system VP(F) in S4 such that ∂V P (F ) = P (F ) ∪ P 
(O), [22]. Actually, consider the SUPH system VP(F) obtained 
from the collar P (O) × [0, 1] of O in S4 by attaching the 1-handle 
system P (hO) on P (O) × 0 = P (O). The 1-handle system h = 

on P (F) and the SUPH system VP(F) construct a SUPH 
system VP (F) ∪ h for the trivial surface-link P (F;h). with ∂(VP 
(F) ∪ h) = P (F;h) ∪ P (O). A spin loop basis (ℓ, ℓ′) for P(F) is the 
system consisting of a spin loop basis of every component of P 
(F ) where the spin loop system ℓ belongs to a meridian system 
of the 1-handle system hO. This system (ℓ,ℓ′) is a spin loop basis 
of the trivial ribbon surface- link P(F;h). Equivalent ribbon 
surface-links are faithfully equivalent and they are moved into 
each other by the moves M0, M1, M2, [30]. This means that there 
is an orientation-preserving diffeomorphism f of S4 sending the 
SUPH system VP(F) ∪ h for P (F;h) to a standard multi-punctured 
handlebody system W in S4. By a choice of f , the system (f (ℓ), 
f (ℓ′)) is a meridian-longitude pair system of the standard multi-
punctured handlebody system W in S4, [26,1]. The loop system 
f (ℓ′) bounds a disjoint disk system delta δ′ in S4 with δ′ ∩ W = 
f (ℓ′), so that the loop system ℓ′ bounds a disjoint disk system 
D′ = f −1(δ′) in S4 with D′ ∩ (VP(F) ∪ h) = ℓ′. The loop system ℓ 
belongs to a meridian system of the 1-handle system P (hO) and 
hence bounds a sub-system D of the meridian disk system P(hO). 
Thus, it is shown that there is an O2-handle basis (D × I, D′ × I) 
on P (F) in S4, whose sub-system to F gives an O2-handle basis 
on F in S4. This completes the proof of Theorem 1.1.

The proof of Theorem 1.3 is done as follows.

Proof of Theorem 1.3

The surface-link P(F;h,h′) bounds a disjoint handlebody system 
V = in S4. Let di be a meridian disk of the 1-handle hi, 
and d = a meridian disk system of h. Since h′ is a trivial 
1-handle system on P (F ; h), there is a disjoint handlebody 
system U in S4 with ∂U = P (F ; h) extending the handlebody 

system V by the uniqueness of an O2-handle pair, [1,2,22]. Then 
d ∩ U = ∂d. Let (ℓ, ℓ′) be a spin loop basis for P (F ; h) given 
by a spin loop basis of every component of P (F ). Then there is 
an orientation-preserving diffeomorphism f of S4 sending the 
handlebody system U to a standard handlebody system W in S4 
such that the spin loop basis (f (ℓ), f (ℓ′)) of W is a meridian-
longitude pair system of W, [1,31]. Hence the spin loop basis 
(f (ℓ), f (ℓ′)) of W bounds a core disk-pair system (δ, δ′) of an 
O2-handle basis (δ × I, δ′ × I) of the trivial surface-link ∂W in 
S4, where δ denotes a meridian disk system of W . This means 
that the spin loop basis(ℓ, ℓ′) of P (F ; h) bounds the core disk-
pair system (D, D′) of the O2-handle basis (D×I, D′ ×I) = (f 

−1(δ)×I, f −1(δ′)×I) on P (F ; h) in S4. The intersection d∩D = 
∅ since D ⊂ U. In general, the disk system d meets the disk 
system D′ transversely with finite interior points in S4. There is a 
technique to eliminate the double point system d ∩ D′ by using 
the O2-handle system (D × I, D′ ×I), [2]. This elimination is 
actually done by an iteration of the following operation where 
the 2-handle system D × I on P (F ; h) as a 1-handle system on 
the surface-link P (F ; h)(D × I):

Finger Move Canceling Operation. Replace the disk system d 
with a disk system d′ obtained from d and a trivial 2-sphere o 
linking around a 1-handle in the “1-handle system D × I”.

Assume that a disk system d∗ obtained from d by an iteration 
of Finger Move Canceling Operation is disjoint from the O2-
handle basis (D × I, D′ × I) on P (F ; h) in S4. Since the loop 
system ∂d∗ = ∂d bounds a disk system dU in U, consider the 
2-sphere system dU ∪ d∗ with components denoted by Ki (i = 
1, 2, . . . , r). For the surface-link F = ∪Fi, this construction can 
be interpreted as follows: Namely, there is a ribbon surface-

link FR = such that the component Fi of F is the local 
connected sum of the S2-knot Ki and  for every i (i = 
1, 2, . . . , r), where the local connected sums  (i = 1, 2, 
. . . , r) are connected sums made in disjoint 4-balls Bi (i = 1, 2, 
. . . , r) in S4 such that the intersection is a trivial proper 
2-disk in Bi and Ki ⊂ Bi. The existence of such a 4-ball system Bi 
(i = 1, 2, . . . , r) is guaranteed by the existence of the O2-handle 
basis (D × I, D′ × I) on P (F ; h). Let E˜(F ) be the maximal free 
abelian covering of E(F). The fundamental group π1(E˜(F ), x˜0) 
(with x˜0 a base point lifting x0) is a free group (since π1(E(F ), 
x0) is a free group) and contains copies of π1(E˜(Ki), x˜0) (i = 1, 2, 
. . . , r) as free product summands. Hence the fundamental groups 
π1(E(Ki), x˜0) (i = 1, 2, . . . , r) are free subgroups of π1(E(F ), x0). 
Since H1(E(Ki); Z) (i = 1, 2, . . . , r) are infinite cyclic groups, 
the fundamental groups π1(E(Ki); x0) (i = 1, 2, . . . , r) are infinite 
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cyclic groups. Then the S2-knots Ki (i = 1, 2, . . . , r) are trivial 
S2-knots, [1,2]. Hence F is equivalent to the ribbon surface-link 
FR. This completes the proof of Theorem 1.3.
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