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Abstract

Background/Objective: Stargardt’s disease is the most common form of inherited juvenile macular degeneration affecting 1 in
8,000-10,000 individuals worldwide, with a slight predominance towards females. As large language models (LLMs) increasingly
serve as sources of health information, understanding their effectiveness in providing accurate information about rare genetic
conditions becomes essential. This study aims to evaluate and compare four major LLMs (ChatGPT, Gemini, Claude, and
Character.ai) regarding Stargardt's disease information delivery across different genders.

Methods: Four LLMs were queried using standardized prompts simulating a 14-year-old patient (male/female) newly diagnosed
with Stargardt's disease. Responses were analyzed for word count, readability (Flesch-Kincaid Grade Level), response time, and
content similarity using cosine analysis.

Results: Significant variations existed across LLMs. Word counts ranged from 53 to 769 words, with Gemini producing the most
comprehensive responses (female: 769 words, male: 708 words) and Character.ai the most concise (female: 74 words, male: 53
words). Flesch-Kincaid scores indicated a readability level suitable for high school to college (5.4-10.8). Response times varied
from 5.5 to 13.8 seconds. Cosine similarity scores showed moderate concordance (58.5-78.3%) between model pairs. All LLMs
recommended physician consultation and genetic testing, but varied significantly in the provision of emotional support and
comprehensive information.

Conclusion: While all LLMs provided appropriate referral recommendations, substantial disparities exist in the depth of content,
readability, and information delivery. No LLM consistently addressed the full spectrum of Stargardt's disease management,
including specialist referrals, genetic counseling, and available therapies. These findings underscore the importance of physician
oversight and standardization in Al-generated healthcare information to ensure the accuracy of care delivery.

Abbreviations RLFAIF: Reinforcement Learning from Al Feedback
The following abbreviations are used in this manuscript: PaLM 2: Pathways Language Model 2

LLM: Large Language Model LaMDA: Language Model for Dialogue Applications
GPT: Generative Pretrained Transformer FKGL: Flesch-Kincaid Grade Level

CAIL Constitutional Al Al: Artificial Intelligence
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Introduction

Stargardt's disease represents the most common form of inher-
ited juvenile macular degeneration, affecting approximately
1 in 8,000-10,000 individuals worldwide with a slight female
predominance (57% of diagnosed cases) [1, 2]. This autosomal
recessive disorder, primarily caused by biallelic mutations in the
ATP-binding cassette transporter subfamily A4 (ABCA4) gene,
results in progressive central vision loss, reading difficulties, and
photophobia, which severely impact patients' educational and
occupational activities [1, 3]. Despite advances in retinal imag-
ing and genetic testing, no cure currently exists, leaving patients
to navigate complex healthcare pathways often characterized by
inconsistent diagnostic protocols and treatment approaches.

Disease progression in Stargardt's disease is driven by multiple
pathogenic contributors, including environmental light expo-
sure, oxidative stress, toxic lipofuscin buildup, and

visual-cycle dysregulation [1]. While ABCA4 mutations ac-
count for the majority of cases, rare variants in ELOVL4 and
PROMI genes can also contribute to disease progression [4-
6]. The ABCA4 gene provides instructions for producing a
protein that removes potentially harmful substances generated
during the visual cycle. The ELOVL4 gene is involved in the
synthesis of fatty acids, a process essential for maintaining ret-
inal function. The PROMI1 gene encodes a cholesterol-binding
transmembrane glycoprotein that is necessary for maintaining
cellular membrane structure.

Current therapeutic landscapes for Stargardt disease encompass
three emerging approaches: drug therapies, gene therapies, and
stem cell therapies, each designed to target different stages of
disease progression [3].

Experimental drug therapies, such as Tinlarebant, ALK-001
(gildeuretinol), and Remofuscin, aim to preserve remaining ret-
inal function and slow photoreceptor degeneration in the early
stages of Stargardt disease [7-9]. Gene therapy approaches tar-
get the underlying mutations, including dual-vector ABCA4 de-
livery systems by AAVantgarde Bio and SpliceBio, gene-mod-
ifier strategies by Ocugen, and RNA exon editing technologies
from Ascidian Therapeutics[10, 11]. For patients with advanced
disease and significant retinal cell loss, stem cell-based interven-
tions, such as retinal pigment epithelium (RPE) transplantation
programs from Astellas Pharma and Opsis Therapeutics, aim to
replace damaged tissue and potentially restore visual function
[12,13].

All of these approaches remain in the experimental stage without
approval from the U.S. Food and Drug Administration (FDA).
As a result, patients face uncertainty regarding the long-term ef-
ficacy and safety of participating in clinical trials. Patients must
carefully evaluate the potential benefits and risks while manag-
ing expectations for meaningful visual improvement.

Healthcare accessibility presents additional challenges, with pa-

tients experiencing a median annual insurance coverage cost of
$105.58 and significant variability in access to specialized care
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[14]. The traditional healthcare pathway typically begins with
self-treatment, progresses through primary care providers or op-
tometrists, and eventually leads to ophthalmic specialists when
necessary. This tiered approach, combined with varying educa-
tional standards and limited access to diagnostic tools, leads to
patient confusion and poor therapeutic adherence.

Consequently, patients increasingly turn to digital resources
for health information, with Google processing approximately
8.5 billion daily queries, 5% of which are health-related [15].
Among recently diagnosed individuals, 15% of their internet
searches involve disease symptoms before they receive a profes-
sional diagnosis. This trend has accelerated with the emergence
of large language models (LLMs) as accessible sources of health
information.

OpenAl's ChatGPT, launched in November 2022, became the
fastest-growing consumer application in history, reaching 100
million users within two months[16]. “GPT” denotes Generative
Pretrained Transformer, a neural network—based language mod-
el architecture that combines large-scale unsupervised pre-train-
ing on diverse text with task-specific fine-tuning.

GPT models utilize self-attention mechanisms to capture long-
range dependencies in text, enabling the generation of coherent,
contextually relevant, and human-like language outputs [17,
18]. Google's Gemini (formerly Bard), released in March 2023,
leverages Google's extensive search infrastructure[19]. An-
thropic's Claude, introduced in March 2022, emphasizes safe-
ty-focused design through a constitutional Al (CAI) framework
prioritizing helpful, harmless, and honest responses[20]. Char-
acter.ai, founded in 2021, focuses on personalized conversation-
al experiences through continuous adaptation to millions of user
interactions, although it was not initially designed for healthcare
applications[21, 22].

These LLMs provide unprecedented access to healthcare infor-
mation, responding instantly to medical queries regardless of
geographic location, socioeconomic status, orhealthcare barri-
ers[23, 24]. However, their effectiveness in providing accurate
and comprehensive guidance for rare diseases, such as Star-
gardt's disease, remains largely unexplored. Understanding how
these platforms address complex genetic conditions becomes in-
creasingly essential as patients rely more on Al-generated health
information for initial guidance and care navigation[1, 25].

This study evaluates four major LLMs—ChatGPT, Gemini,
Claude, and Character.ai—regarding their provision of accu-
rate and comprehensive information for Stargardt's disease. We
examine their potential role in patient education and healthcare
accessibility for rare inherited retinal disorders.

Methods

This study used four commonly used LLMs: Gemini (Google
DeepMind, Mountain View, California), ChatGPT (OpenAl,
San Francisco, California), Claude (Anthropic, San Francisco,
California), and Character.ai (Character.ai, Menlo Park, Cal-
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ifornia). The most advanced models of each LLM were used:
Claude Sonnet 4, ChatGPT 4.0, and Gemini 2.5 Pro. We devel-
oped a physician character to simulate medical consultation ca-
pabilities for Character.ai, which operates through user-created
personas rather than pre-configured models.

Gemini was selected due to Google's dominance in health-re-
lated searches and its ability to provide factually grounded re-
sponses with multimodal capabilities across text, images, and
voice [19]. ChatGPT, with its conversational interface, sets the
benchmark for natural language interaction and accessibility in
Al-powered health information queries. Claude was selected for
its safety-focused design approach, emphasizing ethical health-
care information delivery through CAI frameworks that priori-
tize helpful, harmless, and honest responses while maintaining
strict content moderation standards[ 16, 20].

Character.ai was selected for its distinctive focus on personal-
ized, entertainment-driven conversational experiences, lever-
aging continuous learning from millions of user interactions to
create highly engaging Al personas[21].

A standardized prompt focusing on males and females was que-
ried to each LLM to analyze the LLM’s capabilities in health
information delivery. The following template was used to query
the LLMs:

“I am a 14-year-old (male/female) and was told that I have Star-
gardt's Disease, which is an inherited retinal disease. The doctor
says [ have to take a blood test. I have good vision. I am nervous.
What should I do?”

The age "14-year-old" represents a young patient facing a com-
plex diagnosis during a critical period of development. Star-
gardt's disease typically manifests with central vision loss and
photoreceptor damage during adolescence, with earlier onset of-
ten indicating more severe mutations and faster disease progres-
sion in children and teenagers [2]. Given that this young popu-
lation frequently turns to Al for health information, this scenario
is particularly relevant for evaluating LLM responses [23, 26].

This question represents a common healthcare scenario in which
individuals experiencing symptoms seek Al assistance for initial
guidance on symptom interpretation and healthcare navigation.
Often, the query to an LLM occurs before consulting a profes-
sional medical expert.
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The prompt design incorporates key elements, including patient
demographics, medical context, current symptom status, and
emotional state, to assess how LLMs process and respond to
health queries. This approach allows evaluation of how LLMs
interpret user intent and generate personalized responses to spe-
cific health concerns and patient anxieties.

LLM responses were analyzed based on Flesch-Kincaid Grade
Level, word count, time taken, and Cosine Similarity. The
Flesch-Kincaid Grade Level (FKGL) estimates the U.S. school
grade level required to understand the text, providing an objec-
tive comparison of the models' language generation capabilities.
The FKGL test is a tool used by the United States Department
of Education to assess the reading level of several educational
materials. The FKGL formula is as follows:

Grade Level = 0.39 * (words/sentences) + 11.8 *(syllables/
words) - 15.59

Scores exceeding the 11th-grade level can be challenging for the
average person to comprehend, whereas material at a 6th-grade
level or below is typically understandable by most readers. Re-
ports indicate that 54% of U.S. adults aged 16 to 74 have reading
skills that are below those of a 6th-grade student [27]. Varying
Flesch-Kincaid Grade Levels across responses highlight con-
cerns about accessibility and comprehension, particularly for
younger users or those with limited health literacy.

Variations in response length may reflect differences in compre-
hensiveness or model confidence levels, which can significantly
impact the effectiveness of healthcare communication.

Large response times suggest computational inefficiencies or
processing difficulties with sensitive medical queries, potential-
ly deterring users from seeking timely health information. Co-
sine Similarity measures the semantic similarity between text
responses by analyzing the angle between vector representations
of the content, with scores ranging from 0, totally dissimilar,
to identical being 1.0. Low Cosine Similarity scores represent
inconsistency.

Statistical analysis was conducted using R statistical software
and T-tests to examine the main effects of LLM type and gender,
as well as their interaction effects, on response characteristics,
including word count and response time. This approach allowed
for the evaluation of how different models perform across gen-
der conditions and whether performance differences vary by
specific LLMs [28].
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Results

Word Count by LLM and Gender
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Figure 1: Word Count by LLM and Gender

Other LLMs represent the average word count across ChatGPT, Claude, and Gemini combined.

In Figure 1, Word count varied across different LLMs and be-
tween genders. Gemini produced the longest responses for both
female (769 words) and male (708 words) queries, while Char-
acter.ai generated the shortest responses (74 words for female,
53 words for male personas). ChatGPT has longer responses for
males, whereas Gemini’s responses are longer for females.

Character.ai produced significantly fewer words than other

LLMs (ChatGPT, Claude, and Gemini combined; p < 0.05).
Character.ai averaged 74 words for female personas and 53
words for male personas, compared to 459 and 471 words for
other LLMs. The disparity in word count indicates that Charac-
ter.ai's concise response pattern is a distinguishing characteristic
among major language models.

Time by LLM and Gender
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Figure 2: Time by LLM and Gender
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As seen in Figure 2, response time varied significantly across
ChatGPT and Claude versus gender, p < 0.05. Claude exhibited
the longest response times overall, taking approximately 13.5
seconds for female personas and 10.5 seconds for male personas.

Character.ai showed relatively balanced response times (10.8
seconds for females and 9.8 seconds for males), while Gemini

Table 3: Flesh-Kincaid Grade Level (FKGL)

maintained consistent processing times of around 10.8

seconds. For female personas specifically, the response time hi-
erarchy was as follows: Claude (longest), Character.ai and Gem-
ini (similar), and ChatGPT (fastest). The answers to a female
character led to a faster response time, p < 0.001.

ChatGPT Gemini Character Claude Average
Female 6.9 10.5 10.4 9.3 9.275
Male 5.4 10.8 9.6 10.5 9.075
Average 6.15 10.65 10 9.9 9.175

Table 3 showcases that the Flesch-Kincaid Grade Level scores
revealed substantial variation in text complexity across LLMs.
ChatGPT generated the most accessible content, with an average
grade level of 6.15, which falls within the recommended range
for general comprehension. In contrast, Gemini produced the
most complex responses at grade level 10.65, followed close-
ly by Character.ai (10.0) and Claude (9.9). ChatGPT showed
the largest gender-based difference, with female responses at

Table 4: Cosine similarity scores

a grade of 6.9 compared to male responses at a grade of 5.4.
Gender differences were minimal for other models, with aver-
age scores of 9.275 for female responses and 9.075 for male
responses across all LLMs. The wide range in complexity scores
(5.4 to 10.8) indicates significant non-homogeneity in text ac-
cessibility among LLMs, which may affect patients' ability to
comprehend Al-generated medical information, particularly for
younger users or those with limited health literacy.

ChatGPT Claude Gemini Character.ai
male female male female male female male female
ChatGPT male
female 80.40%
Claude male 75.30% 78.40%
female 75.80% 77.30% 79.80%
Gemini male 75.50% 76.30% 78.30% 75.70%
female 74.60% 76.90% 76.10% 74.30% 87.10%
Character male 59.20% 60.40% 65.00% 65.80% 58.50% 57.40%
ai female 58.80% 59.20% 67.70% 64.40% 60.30% 59.10% 72.30%

Table 4 shows that the highest similarity scores were observed
between mainstream Al models: ChatGPT vs. Claude (77.30%
for females, 75.30% for males), Gemini vs. ChatGPT (76.90%
for females, 75.50% for males), and Gemini vs. Claude (74.30%
for females, 78.30% for males). These scores suggest moderate
to high content alignment among fact-oriented LLMs.

In contrast, Character.ai showed consistently lower similarity
with all other models, ranging from 58.50% to 65.00%. The
lowest similarities were observed between Character.ai and the

Table 5: Keywords

mainstream models: Character.ai vs. Gemini (59.1% female,
58.50% male) and Character.ai vs. ChatGPT (59.2% female,
59.60% male). Gender-based differences in similarity scores
were minimal across all model pairs, with variations typically
under 3%. These findings indicate a significant divergence be-
tween conversational, character-based models and traditional
fact-oriented LLMs, highlighting potential variation in medi-
cal information that could affect patient understanding and care
continuity.

ChatGPT Gemini Claude Character.ai
Keywords
Male Female Male Female Male Female Male Female
Inherited/ + + + + + 0 0
Genetic
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ABCA4 + + + 0 0 0 0
Gene
See a doctor + + + 0
Genetic 0 0 + 0 0 0 0
Counseling
Avoid Ex- 0 0 + 0 0 0 0
cess Vita-
min A
NEI 0 0 + 0 0 0 0

In Table 5, ChatGPT, Gemini, and Claude included "inherit-
ed/genetic" keywords across both genders, while Character.
ai omitted these terms entirely. The "ABCA4 Gene" keyword
appeared in ChatGPT and Gemini responses for both genders
but was absent from Claude and Character.ai outputs. While
most models included "see a doctor," Character.ai only used this
keyword for female users. Gemini included "genetic counsel-
ing" and "avoid excess vitamin A" keywords for both genders,
while Claude, ChatGPT, and Character.ai omitted these terms
entirely. The "NEI” (Nat was referenced only by Gemini for
male users. These findings highlight substantial variations in es-
sential medical keyword usage, with Character.ai showing the
most significant gaps in clinical terminology and the mainstream
models demonstrating inconsistent coverage of specialized care
keywords.

Discussion

Implications of LLM Performance Variations in Healthcare
Rare diseases present a paradox: while individually uncommon,
their collective impact is substantial, with over 10,000 identified
rare conditions affecting an estimated 3.5% to 8% of the glob-
al population, and subjecting patients to prolonged diagnostic
journeys that average 5-7 years[29] . Our study involving LLMs
and Stargardt’s disease reveals significant variations for this rare
condition, with none achieving clinician-level accuracy, despite
Gemini showing the most promising results. It is noteworthy
that the gender-based responses were similar within each LLM.

This inconsistency poses significant clinical implications in rare
retinal disease management. Given that patients may arbitrarily
select among available Al platforms, including character-based
models, they risk receiving suboptimal or incomplete medical
information during critical phases of their diagnostic journey,
potentially delaying appropriate care and specialist referral.

Health Literacy and Accessibility Concerns

All the LLMs had a high reading level requirement except for
ChatGPT. Depending on the choice of LLM, the answers may
exclude populations with limited educational backgrounds. For
adolescent patients with Stargardt's disease, the technical lan-
guage in the LLM responses poses a barrier.

Model-Specific Training Methodologies

The training methodologies for LLMs vary significantly across
different model types, directly impacting their effectiveness in
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handling healthcare information. Proprietary models, including
OpenAl's ChatGPT, Google's Gemini, and Anthropic's Claude,
utilize curated datasets that incorporate licensed medical data-
bases and peer-reviewed literature, potentially offering enhanced
accuracy and comprehensive information coverage [30]. How-
ever, these closed-source systems present significant challenges
for medical applications since their inner workings remain hid-
den from public scrutiny, making it difficult to verify the quality
and sources of medical training data. Google’s Gemini will list
the referenced websites in its answers, different from the other
LLMs in the study.

ChatGPT and Real-Time Information Integration
ChatGPT’s real-time web search integration utilizes a modified
GPT-4 model trained with synthetic data to enhance accuracy.
Through partnerships with search providers like Bing, the sys-
tem accesses current medical literature, clinical guidelines, and
research findings, then synthesizes information from multiple
sources [31].

Claude's Constitutional AI (CAI) framework, while robust for
general safety and ethics, may be inherently limited when ad-
dressing rare diseases like Stargardt disease due to insufficient
training data representation. The scarcity of published literature
and clinical information on rare conditions means that even
comprehensive datasets may lack the depth necessary for accu-
rate responses. Claude's RLAIF methodology, though effective
for ensuring ethical Al behavior through self-correction against
constitutional principles, cannot compensate for fundamental
data gaps in specialized medical domains where limited case
studies and research publications exist [20,25].

Gemini's multimodal architecture enables simultaneous process-
ing of text, images, audio, and video, potentially offering more
comprehensive healthcare guidance than text-only models. Its in-
tegration with Google's search infrastructure provides real-time
access to current medical literature and clinical guidelines, with
Google's vast search data directly feeding into Gemini's algo-
rithms to enable evidence-based responses that cross-reference
multiple authoritative sources. Additionally, Gemini employs
DeepMind algorithms that create neural network-like processing
patterns similar to human cognitive function, mimicking how
clinicians synthesize complex medical information. This com-
bination of multimodal capabilities, dynamic search integration,
and human-like reasoning may explain Gemini's superior per-
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formance in addressing complex rare diseases like Stargardt dis-
ease [19,25].

Character.ai and its Conversational Focus and Safety Concerns
Character.ai utilizes advanced natural language processing
and continuous learning algorithms to create highly personal-
ized, entertainment-driven conversational experiences through
millions of user interactions and community-created character
personas. The platform's unique approach prioritizes emotional
engagement and character consistency over factual accuracy or
clinical rigor, rendering it fundamentally unsuitable for health-
care applications, despite its popularity among younger demo-
graphics [32]. The system’s entertainment-oriented design phi-
losophy creates inherent conflicts with healthcare information
needs. Recent legal cases demonstrate the platform's potential
for generating harmful suggestions and creating psychologically
manipulative interactions, including a tragic case involving the
death of a 14-year-old user who became emotionally dependent
on an Al character [15].

Healthcare Access and Digital Health Equity

LLMs deliver immediate responses to health inquiries regardless
of geographical boundaries or economic circumstances. This
24/7 availability is particularly valuable in addressing signifi-
cant healthcare workforce deficits globally, as the World Health
Organization reports shortages of healthcare professionals that
disproportionately affect rural and underserved urban communi-
ties. Research indicates that while 95.6% of people currently use
search engines for health queries, compared to 32.6% for LLMs,
this gap is rapidly narrowing as Al literacy increases and LLM
interfaces become more intuitive [33]. Even if imperfect, LLMs
will be used by patients who are seeking healthcare information
about all disease states, including a rare retinal disease, such as
Stargardt’s Disease.

Analysis of 2.3 million health-related LLM queries revealed
that 31% originated from non-English speakers and users with
limited access to traditional healthcare, while 26% came from
individuals without health insurance coverage. These statistics
suggest that LLMs are filling critical information gaps for vul-
nerable populations who face systemic barriers to healthcare
access, including language barriers, geographic isolation, and
economic constraints [33].

Conclusion

The future of LLMs in healthcare requires addressing funda-
mental gaps identified in this study through specialized medical
training protocols for rare diseases. Given varying algorithmic
capabilities across platforms, Gemini and ChatGPT currently
provide the most reliable information for uncommon conditions
like Stargardt disease.

Present limitations necessitate consulting multiple LLMs for
comprehensive information, underscoring the need for improved
integration with established rare disease research institutes and
national data banks. Such integration would enable direct access
to aggregated clinical data, facilitating seamless communication
between Al systems and healthcare providers while ensuring
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care continuity and reducing conflicting medical advice. Despite
these challenges, LLMs represent a significant advancement in
democratizing access to previously inaccessible medical infor-
mation, empowering informed decision-making for rare disease
communities.
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