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Abstract
Background/Objective: Stargardt's disease is the most common form of inherited juvenile macular degeneration affecting 1 in 
8,000-10,000 individuals worldwide, with a slight predominance towards females. As large language models (LLMs) increasingly 
serve as sources of health information, understanding their effectiveness in providing accurate information about rare genetic 
conditions becomes essential. This study aims to evaluate and compare four major LLMs (ChatGPT, Gemini, Claude, and 
Character.ai) regarding Stargardt's disease information delivery across different genders. 

Methods: Four LLMs were queried using standardized prompts simulating a 14-year-old patient (male/female) newly diagnosed 
with Stargardt's disease. Responses were analyzed for word count, readability (Flesch-Kincaid Grade Level), response time, and 
content similarity using cosine analysis.  

Results: Significant variations existed across LLMs. Word counts ranged from 53 to 769 words, with Gemini producing the most 
comprehensive responses (female: 769 words, male: 708 words) and Character.ai the most concise (female: 74 words, male: 53 
words). Flesch-Kincaid scores indicated a readability level suitable for high school to college (5.4-10.8). Response times varied 
from 5.5 to 13.8 seconds. Cosine similarity scores showed moderate concordance (58.5-78.3%) between model pairs. All LLMs 
recommended physician consultation and genetic testing, but varied significantly in the provision of emotional support and 
comprehensive information. 

Conclusion: While all LLMs provided appropriate referral recommendations, substantial disparities exist in the depth of content, 
readability, and information delivery. No LLM consistently addressed the full spectrum of Stargardt's disease management, 
including specialist referrals, genetic counseling, and available therapies. These findings underscore the importance of physician 
oversight and standardization in AI-generated healthcare information to ensure the accuracy of care delivery.
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Abbreviations
The following abbreviations are used in this manuscript:
LLM:	   Large Language Model
GPT: 	   Generative Pretrained Transformer
CAI:	   Constitutional AI

RLFAIF:   Reinforcement Learning from AI Feedback
PaLM 2	:    Pathways Language Model 2
LaMDA:    Language Model for Dialogue Applications
FKGL:	       Flesch-Kincaid Grade Level
 AI:	   Artificial Intelligence
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Introduction
Stargardt's disease represents the most common form of inher-
ited juvenile macular degeneration, affecting approximately 
1 in 8,000-10,000 individuals worldwide with a slight female 
predominance (57% of diagnosed cases) [1, 2]. This autosomal 
recessive disorder, primarily caused by biallelic mutations in the 
ATP-binding cassette transporter subfamily A4 (ABCA4) gene, 
results in progressive central vision loss, reading difficulties, and 
photophobia, which severely impact patients' educational and 
occupational activities [1, 3]. Despite advances in retinal imag-
ing and genetic testing, no cure currently exists, leaving patients 
to navigate complex healthcare pathways often characterized by 
inconsistent diagnostic protocols and treatment approaches.

Disease progression in Stargardt's disease is driven by multiple 
pathogenic contributors, including environmental light expo-
sure, oxidative stress, toxic lipofuscin buildup, and
visual-cycle dysregulation [1]. While ABCA4 mutations ac-
count for the majority of cases, rare variants in ELOVL4 and 
PROM1 genes can also contribute to disease progression [4-
6]. The ABCA4 gene provides instructions for producing a 
protein that removes potentially harmful substances generated 
during the visual cycle. The ELOVL4 gene is involved in the 
synthesis of fatty acids, a process essential for maintaining ret-
inal function. The PROM1 gene encodes a cholesterol-binding 
transmembrane glycoprotein that is necessary for maintaining 
cellular membrane structure.

Current therapeutic landscapes for Stargardt disease encompass 
three emerging approaches: drug therapies, gene therapies, and 
stem cell therapies, each designed to target different stages of 
disease progression [3].

Experimental drug therapies, such as Tinlarebant, ALK-001 
(gildeuretinol), and Remofuscin, aim to preserve remaining ret-
inal function and slow photoreceptor degeneration in the early 
stages of Stargardt disease [7-9]. Gene therapy approaches tar-
get the underlying mutations, including dual-vector ABCA4 de-
livery systems by AAVantgarde Bio and SpliceBio, gene-mod-
ifier strategies by Ocugen, and RNA exon editing technologies 
from Ascidian Therapeutics[10, 11]. For patients with advanced 
disease and significant retinal cell loss, stem cell-based interven-
tions, such as retinal pigment epithelium (RPE) transplantation 
programs from Astellas Pharma and Opsis Therapeutics, aim to 
replace damaged tissue and potentially restore visual function 
[12, 13].

All of these approaches remain in the experimental stage without 
approval from the U.S. Food and Drug Administration (FDA). 
As a result, patients face uncertainty regarding the long-term ef-
ficacy and safety of participating in clinical trials. Patients must 
carefully evaluate the potential benefits and risks while manag-
ing expectations for meaningful visual improvement.

Healthcare accessibility presents additional challenges, with pa-
tients experiencing a median annual insurance coverage cost of 
$105.58 and significant variability in access to specialized care 

[14]. The traditional healthcare pathway typically begins with 
self-treatment, progresses through primary care providers or op-
tometrists, and eventually leads to ophthalmic specialists when 
necessary. This tiered approach, combined with varying educa-
tional standards and limited access to diagnostic tools, leads to 
patient confusion and poor therapeutic adherence.

Consequently, patients increasingly turn to digital resources 
for health information, with Google processing approximately 
8.5 billion daily queries, 5% of which are health-related [15]. 
Among recently diagnosed individuals, 15% of their internet 
searches involve disease symptoms before they receive a profes-
sional diagnosis. This trend has accelerated with the emergence 
of large language models (LLMs) as accessible sources of health 
information.

OpenAI's ChatGPT, launched in November 2022, became the 
fastest-growing consumer application in history, reaching 100 
million users within two months[16]. “GPT” denotes Generative 
Pretrained Transformer, a neural network–based language mod-
el architecture that combines large-scale unsupervised pre-train-
ing on diverse text with task-specific fine-tuning.

GPT models utilize self-attention mechanisms to capture long-
range dependencies in text, enabling the generation of coherent, 
contextually relevant, and human-like language outputs [17, 
18]. Google's Gemini (formerly Bard), released in March 2023, 
leverages Google's extensive search infrastructure[19]. An-
thropic's Claude, introduced in March 2022, emphasizes safe-
ty-focused design through a constitutional AI (CAI) framework 
prioritizing helpful, harmless, and honest responses[20]. Char-
acter.ai, founded in 2021, focuses on personalized conversation-
al experiences through continuous adaptation to millions of user 
interactions, although it was not initially designed for healthcare 
applications[21, 22].

These LLMs provide unprecedented access to healthcare infor-
mation, responding instantly to medical queries regardless of 
geographic location, socioeconomic status, orhealthcare barri-
ers[23, 24]. However, their effectiveness in providing accurate 
and comprehensive guidance for rare diseases, such as Star-
gardt's disease, remains largely unexplored. Understanding how 
these platforms address complex genetic conditions becomes in-
creasingly essential as patients rely more on AI-generated health 
information for initial guidance and care navigation[1, 25].

This study evaluates four major LLMs—ChatGPT, Gemini, 
Claude, and Character.ai—regarding their provision of accu-
rate and comprehensive information for Stargardt's disease. We 
examine their potential role in patient education and healthcare 
accessibility for rare inherited retinal disorders.

Methods
This study used four commonly used LLMs: Gemini (Google 
DeepMind, Mountain View, California), ChatGPT (OpenAI, 
San Francisco, California), Claude (Anthropic, San Francisco, 
California), and Character.ai (Character.ai, Menlo Park, Cal-
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ifornia). The most advanced models of each LLM were used: 
Claude Sonnet 4, ChatGPT 4.0, and Gemini 2.5 Pro. We devel-
oped a physician character to simulate medical consultation ca-
pabilities for Character.ai, which operates through user-created 
personas rather than pre-configured models.

Gemini was selected due to Google's dominance in health-re-
lated searches and its ability to provide factually grounded re-
sponses with multimodal capabilities across text, images, and 
voice [19]. ChatGPT, with its conversational interface, sets the 
benchmark for natural language interaction and accessibility in 
AI-powered health information queries. Claude was selected for 
its safety-focused design approach, emphasizing ethical health-
care information delivery through CAI frameworks that priori-
tize helpful, harmless, and honest responses while maintaining 
strict content moderation standards[16, 20].

Character.ai was selected for its distinctive focus on personal-
ized, entertainment-driven conversational experiences, lever-
aging continuous learning from millions of user interactions to 
create highly engaging AI personas[21].

A standardized prompt focusing on males and females was que-
ried to each LLM to analyze the LLM’s capabilities in health 
information delivery. The following template was used to query 
the LLMs:
“I am a 14-year-old (male/female) and was told that I have Star-
gardt's Disease, which is an inherited retinal disease. The doctor 
says I have to take a blood test. I have good vision. I am nervous. 
What should I do?”

The age "14-year-old" represents a young patient facing a com-
plex diagnosis during a critical period of development. Star-
gardt's disease typically manifests with central vision loss and 
photoreceptor damage during adolescence, with earlier onset of-
ten indicating more severe mutations and faster disease progres-
sion in children and teenagers [2]. Given that this young popu-
lation frequently turns to AI for health information, this scenario 
is particularly relevant for evaluating LLM responses [23, 26].

This question represents a common healthcare scenario in which 
individuals experiencing symptoms seek AI assistance for initial 
guidance on symptom interpretation and healthcare navigation. 
Often, the query to an LLM occurs before consulting a profes-
sional medical expert.

The prompt design incorporates key elements, including patient 
demographics, medical context, current symptom status, and 
emotional state, to assess how LLMs process and respond to 
health queries. This approach allows evaluation of how LLMs 
interpret user intent and generate personalized responses to spe-
cific health concerns and patient anxieties.
LLM responses were analyzed based on Flesch-Kincaid Grade 
Level, word count, time taken, and Cosine Similarity. The 
Flesch-Kincaid Grade Level (FKGL) estimates the U.S. school 
grade level required to understand the text, providing an objec-
tive comparison of the models' language generation capabilities. 
The FKGL test is a tool used by the United States Department 
of Education to assess the reading level of several educational 
materials. The FKGL formula is as follows:

Grade Level = 0.39 * (words/sentences) + 11.8 *(syllables/
words) - 15.59

Scores exceeding the 11th-grade level can be challenging for the 
average person to comprehend, whereas material at a 6th-grade 
level or below is typically understandable by most readers. Re-
ports indicate that 54% of U.S. adults aged 16 to 74 have reading 
skills that are below those of a 6th-grade student [27]. Varying 
Flesch-Kincaid Grade Levels across responses highlight con-
cerns about accessibility and comprehension, particularly for 
younger users or those with limited health literacy.
Variations in response length may reflect differences in compre-
hensiveness or model confidence levels, which can significantly 
impact the effectiveness of healthcare communication.

Large response times suggest computational inefficiencies or 
processing difficulties with sensitive medical queries, potential-
ly deterring users from seeking timely health information. Co-
sine Similarity measures the semantic similarity between text 
responses by analyzing the angle between vector representations 
of the content, with scores ranging from 0, totally dissimilar, 
to identical being 1.0. Low Cosine Similarity scores represent 
inconsistency.

Statistical analysis was conducted using R statistical software 
and T-tests to examine the main effects of LLM type and gender, 
as well as their interaction effects, on response characteristics, 
including word count and response time. This approach allowed 
for the evaluation of how different models perform across gen-
der conditions and whether performance differences vary by 
specific LLMs [28].
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Results

Other LLMs represent the average word count across ChatGPT, Claude, and Gemini combined.

In Figure 1, Word count varied across different LLMs and be-
tween genders. Gemini produced the longest responses for both 
female (769 words) and male (708 words) queries, while Char-
acter.ai generated the shortest responses (74 words for female, 
53 words for male personas). ChatGPT has longer responses for 
males, whereas Gemini’s responses are longer for females.
Character.ai produced significantly fewer words than other 

LLMs (ChatGPT, Claude, and Gemini combined; p < 0.05). 
Character.ai averaged 74 words for female personas and 53 
words for male personas, compared to 459 and 471 words for 
other LLMs. The disparity in word count indicates that Charac-
ter.ai's concise response pattern is a distinguishing characteristic 
among major language models.

Figure 1: Word Count by LLM and Gender

Figure 2: Time by LLM and Gender
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As seen in Figure 2, response time varied significantly across 
ChatGPT and Claude versus gender, p < 0.05. Claude exhibited 
the longest response times overall, taking approximately 13.5 
seconds for female personas and 10.5 seconds for male personas.

Character.ai showed relatively balanced response times (10.8 
seconds for females and 9.8 seconds for males), while Gemini 

maintained consistent processing times of around 10.8
 
seconds. For female personas specifically, the response time hi-
erarchy was as follows: Claude (longest), Character.ai and Gem-
ini (similar), and ChatGPT (fastest). The answers to a female 
character led to a faster response time, p < 0.001.

Table 3: Flesh-Kincaid Grade Level (FKGL)
ChatGPT Gemini Character Claude Average

Female 6.9 10.5 10.4 9.3 9.275
Male 5.4 10.8 9.6 10.5 9.075

Average 6.15 10.65 10 9.9 9.175

Table 3 showcases that the Flesch-Kincaid Grade Level scores 
revealed substantial variation in text complexity across LLMs. 
ChatGPT generated the most accessible content, with an average 
grade level of 6.15, which falls within the recommended range 
for general comprehension. In contrast, Gemini produced the 
most complex responses at grade level 10.65, followed close-
ly by Character.ai (10.0) and Claude (9.9). ChatGPT showed 
the largest gender-based difference, with female responses at 

a grade of 6.9 compared to male responses at a grade of 5.4. 
Gender differences were minimal for other models, with aver-
age scores of 9.275 for female responses and 9.075 for male 
responses across all LLMs. The wide range in complexity scores 
(5.4 to 10.8) indicates significant non-homogeneity in text ac-
cessibility among LLMs, which may affect patients' ability to 
comprehend AI-generated medical information, particularly for 
younger users or those with limited health literacy.

Table 4: Cosine similarity scores
ChatGPT Claude Gemini Character.ai

male female male female male female male female
ChatGPT male

female 80.40%
Claude male 75.30% 78.40%

female 75.80% 77.30% 79.80%
Gemini male 75.50% 76.30% 78.30% 75.70%

female 74.60% 76.90% 76.10% 74.30% 87.10%
Character

.ai
male 59.20% 60.40% 65.00% 65.80% 58.50% 57.40%

female 58.80% 59.20% 67.70% 64.40% 60.30% 59.10% 72.30%

Table 4 shows that the highest similarity scores were observed 
between mainstream AI models: ChatGPT vs. Claude (77.30% 
for females, 75.30% for males), Gemini vs. ChatGPT (76.90% 
for females, 75.50% for males), and Gemini vs. Claude (74.30% 
for females, 78.30% for males). These scores suggest moderate 
to high content alignment among fact-oriented LLMs.

In contrast, Character.ai showed consistently lower similarity 
with all other models, ranging from 58.50% to 65.00%. The 
lowest similarities were observed between Character.ai and the 

mainstream models: Character.ai vs. Gemini (59.1% female, 
58.50% male) and Character.ai vs. ChatGPT (59.2% female, 
59.60% male). Gender-based differences in similarity scores 
were minimal across all model pairs, with variations typically 
under 3%. These findings indicate a significant divergence be-
tween conversational, character-based models and traditional 
fact-oriented LLMs, highlighting potential variation in medi-
cal information that could affect patient understanding and care 
continuity.

Table 5: Keywords
ChatGPT Gemini Claude Character.ai	

Keywords
Male Female Male Female Male Female Male Female

Inhe r i t ed /
Genetic

+ + + + + + 0 0
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A B C A 4 
Gene

+ + + + 0 0 0 0

See a doctor + + + + + + 0 +
G e n e t i c 
Counseling

0 0 + + 0 0 0 0

Avoid Ex-
cess Vita-

min A

0 0 + + 0 0 0 0

NEI 0 0 + 0 0 0 0 0

In Table 5, ChatGPT, Gemini, and Claude included "inherit-
ed/genetic" keywords across both genders, while Character.
ai omitted these terms entirely. The "ABCA4 Gene" keyword 
appeared in ChatGPT and Gemini responses for both genders 
but was absent from Claude and Character.ai outputs. While 
most models included "see a doctor," Character.ai only used this 
keyword for female users. Gemini included "genetic counsel-
ing" and "avoid excess vitamin A" keywords for both genders, 
while Claude, ChatGPT, and Character.ai omitted these terms 
entirely. The "NEI” (Nat was referenced only by Gemini for 
male users. These findings highlight substantial variations in es-
sential medical keyword usage, with Character.ai showing the 
most significant gaps in clinical terminology and the mainstream 
models demonstrating inconsistent coverage of specialized care 
keywords.

Discussion
Implications of LLM Performance Variations in Healthcare
Rare diseases present a paradox: while individually uncommon, 
their collective impact is substantial, with over 10,000 identified 
rare conditions affecting an estimated 3.5% to 8% of the glob-
al population, and subjecting patients to prolonged diagnostic 
journeys that average 5-7 years[29] . Our study involving LLMs 
and Stargardt’s disease reveals significant variations for this rare 
condition, with none achieving clinician-level accuracy, despite 
Gemini showing the most promising results. It is noteworthy 
that the gender-based responses were similar within each LLM.

This inconsistency poses significant clinical implications in rare 
retinal disease management. Given that patients may arbitrarily 
select among available AI platforms, including character-based 
models, they risk receiving suboptimal or incomplete medical 
information during critical phases of their diagnostic journey, 
potentially delaying appropriate care and specialist referral.

Health Literacy and Accessibility Concerns
All the LLMs had a high reading level requirement except for 
ChatGPT. Depending on the choice of LLM, the answers may 
exclude populations with limited educational backgrounds. For 
adolescent patients with Stargardt's disease, the technical lan-
guage in the LLM responses poses a barrier.

Model-Specific Training Methodologies
The training methodologies for LLMs vary significantly across 
different model types, directly impacting their effectiveness in 

handling healthcare information. Proprietary models, including 
OpenAI's ChatGPT, Google's Gemini, and Anthropic's Claude, 
utilize curated datasets that incorporate licensed medical data-
bases and peer-reviewed literature, potentially offering enhanced 
accuracy and comprehensive information coverage [30]. How-
ever, these closed-source systems present significant challenges 
for medical applications since their inner workings remain hid-
den from public scrutiny, making it difficult to verify the quality 
and sources of medical training data. Google’s Gemini will list 
the referenced websites in its answers, different from the other 
LLMs in the study.

ChatGPT and Real-Time Information Integration
ChatGPT’s real-time web search integration utilizes a modified 
GPT-4 model trained with synthetic data to enhance accuracy. 
Through partnerships with search providers like Bing, the sys-
tem accesses current medical literature, clinical guidelines, and 
research findings, then synthesizes information from multiple 
sources [31].

Claude's Constitutional AI (CAI) framework, while robust for 
general safety and ethics, may be inherently limited when ad-
dressing rare diseases like Stargardt disease due to insufficient 
training data representation. The scarcity of published literature 
and clinical information on rare conditions means that even 
comprehensive datasets may lack the depth necessary for accu-
rate responses. Claude's RLAIF methodology, though effective 
for ensuring ethical AI behavior through self-correction against 
constitutional principles, cannot compensate for fundamental 
data gaps in specialized medical domains where limited case 
studies and research publications exist [20,25].

Gemini's multimodal architecture enables simultaneous process-
ing of text, images, audio, and video, potentially offering more 
comprehensive healthcare guidance than text-only models. Its in-
tegration with Google's search infrastructure provides real-time 
access to current medical literature and clinical guidelines, with 
Google's vast search data directly feeding into Gemini's algo-
rithms to enable evidence-based responses that cross-reference 
multiple authoritative sources. Additionally, Gemini employs 
DeepMind algorithms that create neural network-like processing 
patterns similar to human cognitive function, mimicking how 
clinicians synthesize complex medical information. This com-
bination of multimodal capabilities, dynamic search integration, 
and human-like reasoning may explain Gemini's superior per-
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formance in addressing complex rare diseases like Stargardt dis-
ease [19,25].

Character.ai and its Conversational Focus and Safety Concerns
Character.ai utilizes advanced natural language processing 
and continuous learning algorithms to create highly personal-
ized, entertainment-driven conversational experiences through 
millions of user interactions and community-created character 
personas. The platform's unique approach prioritizes emotional 
engagement and character consistency over factual accuracy or 
clinical rigor, rendering it fundamentally unsuitable for health-
care applications, despite its popularity among younger demo-
graphics [32]. The system’s entertainment-oriented design phi-
losophy creates inherent conflicts with healthcare information 
needs. Recent legal cases demonstrate the platform's potential 
for generating harmful suggestions and creating psychologically 
manipulative interactions, including a tragic case involving the 
death of a 14-year-old user who became emotionally dependent 
on an AI character [15].

Healthcare Access and Digital Health Equity
LLMs deliver immediate responses to health inquiries regardless 
of geographical boundaries or economic circumstances. This 
24/7 availability is particularly valuable in addressing signifi-
cant healthcare workforce deficits globally, as the World Health 
Organization reports shortages of healthcare professionals that 
disproportionately affect rural and underserved urban communi-
ties. Research indicates that while 95.6% of people currently use 
search engines for health queries, compared to 32.6% for LLMs, 
this gap is rapidly narrowing as AI literacy increases and LLM 
interfaces become more intuitive [33]. Even if imperfect, LLMs 
will be used by patients who are seeking healthcare information 
about all disease states, including a rare retinal disease, such as 
Stargardt’s Disease.

Analysis of 2.3 million health-related LLM queries revealed 
that 31% originated from non-English speakers and users with 
limited access to traditional healthcare, while 26% came from 
individuals without health insurance coverage. These statistics 
suggest that LLMs are filling critical information gaps for vul-
nerable populations who face systemic barriers to healthcare 
access, including language barriers, geographic isolation, and 
economic constraints [33].

Conclusion
The future of LLMs in healthcare requires addressing funda-
mental gaps identified in this study through specialized medical 
training protocols for rare diseases. Given varying algorithmic 
capabilities across platforms, Gemini and ChatGPT currently 
provide the most reliable information for uncommon conditions 
like Stargardt disease.

Present limitations necessitate consulting multiple LLMs for 
comprehensive information, underscoring the need for improved 
integration with established rare disease research institutes and 
national data banks. Such integration would enable direct access 
to aggregated clinical data, facilitating seamless communication 
between AI systems and healthcare providers while ensuring 

care continuity and reducing conflicting medical advice. Despite 
these challenges, LLMs represent a significant advancement in 
democratizing access to previously inaccessible medical infor-
mation, empowering informed decision-making for rare disease 
communities.
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