Journal of Earth, Environment Science and Agricultural Research

Research Article Volume 1 | Issue 2

Optimization and Comparative Analysis of Artificial Lift Systems for Horizontal Well Production: A Case Study of Gas Lift, Beam Lift, and ESP Systems

Ekrem Alagoz^{1*}, Mehmet Serif Arslan², Muhammed Said Ergul³, Mouad Al Krmagi⁴ and Mubarek Alpkiray⁵

¹Turkish Petroleum Corporation (TPAO)
 ²Istanbul Technical University
 ³Izmir Katip Celebi University
 ⁴Texas A&M University
 ⁵General Directorate of Mineral Research and Exploration (MTA)

*Corresponding Author: Ekrem Alagoz, Turkish Petroleum Corporation (TPAO), Engineering Department, Sogutozu Nizami Gencevi Street No:10, 06510 Cankaya, Ankara, Turkey.

Submitted: 29 Nov 2024 Accepted: 08 Dec 2024 **Published:** 12 Dec 2024

Citation: Alagoz E, Arslan MS, Ergul MS, Krmagi MA, Alpkiray M (2024) Optimization and Comparative Analysis of Artificial Lift Systems for Horizontal Well Production: A Case Study of Gas Lift, Beam Lift, and ESP Systems. CSK J of E, E Science & Agriculture Research. Research Article 1(2): 01-13.

Abstract

This study presents an optimization and comparative analysis of three artificial lift systems—gas lift, beam lift, and electric submersible pump (ESP)—for producing hydrocarbons from a horizontal well. The well, with a true vertical depth (TVD) of 9,000 ft and a measured depth (MD) of 18,000 ft, features challenging reservoir conditions including a gas-liquid ratio (GLR) of 200 Scf/STBL and a bottom-hole temperature of 180°F. To determine the most suitable lifting system, we assess the efficiency and flexibility of each system to sustain production until the well reaches its economic limit of 5 STB/day. The analysis considers oil properties (38° API), water-oil ratio (WOR of 1 BW/BO), and available infrastructure such as a nearby gas pipeline operating at 1014.7 psia. Key changes in each system are evaluated as the well depletes, including modifications to accommodate declining reservoir pressure and production rates. After a detailed comparison, the most effective artificial lift method is selected based on technical performance, operational adaptability, and overall cost efficiency. The findings of this study provide practical recommendations for optimizing artificial lift strategies in horizontal well scenarios.

Keywords: Artificial Lift Systems, Gas Lift, Electric Submersible Pump (ESP), Beam Lift, Horizontal Well Production

Introduction

Artificial lift systems are crucial in maintaining and enhancing hydrocarbon production from oil and gas wells, particularly as natural reservoir energy depletes over time. As a well progresses beyond its natural flowing life, pressure support mechanisms, such as gas lift, beam lift, and electric submersible pump (ESP) systems, are implemented to sustain production to the economic limit. Each of these artificial lift techniques has its unique advantages and challenges, and the selection of the most appropriate system depends on factors such as reservoir conditions, production rates, well geometry, and operational flexibility.

The focus of this study is a horizontal well with a true vertical depth (TVD) of 9,000 feet and a measured depth (MD) of 18,000 feet. The well produces hydrocarbons

with an oil gravity of 38° API and a gas-liquid ratio (GLR) of 200 Scf/STBL. As the reservoir depletes and production rates decline, artificial lift will be required to maintain oil production, particularly as the well approaches the economic limit of 5 STB/day. A nearby gas pipeline operating at 1014.7 psia (60 degF) provides an additional option for using gas lift if needed.

To predict future production and select the optimal artificial lift system, we analyze the well's performance using a decline curve (Figure 1), which shows the well's natural flow over 47 days before requiring artificial lift. Decline curve analysis enables the forecasting of future oil rates and corresponding bottom-hole pressure, which are essential in evaluating the efficiency and flexibility of various artificial lift methods.

Figure 1 – Oil Rate vs Time Plot of designated well

Previous Works

In this study, we will compare the gas lift, beam lift, and ESP systems based on their performance in sustaining production as the well depletes. Special attention will be given to system efficiency, operational adaptability, and changes required over time to keep production above the economic threshold. The goal is to determine the most cost-effective and technically suitable lift system for the long-term operation of the horizontal well under the given conditions (Table 1). It is important to note that the deepest vertical part of the well is at 8,000 TVD. The well transitions to horizontal over the final 1,000 feet of TVD. Finally, the bottom hole pressure numbers exist at the deepest TVD at 9,000 feet.

Table 1	– Horizontal	Well Data
---------	--------------	-----------

Depth (TVD), ft	9,000
Measured Depth (MD), ft	18,000
Oil API Gravity	38
Water Specific Gravity	1.02
Gas Specific Gravity	0.7
Gas Liquid Ratio (GLR) (Scf/STBL)	200
WOR (B_w/B_o)	1
Separator Pressure, psia	65
Separator Temperature, degF	100
Tubing ODxID, in	2.875"x 2.441"
Casing ID, in	7
Bottom Hole Temperature, degF	180

well production and evaluating the effectiveness of various stimulation and artificial lift techniques, which are essential for enhancing horizontal well performance. Alagoz et al. (2023) conducted an optimization study on fracture treatment design for vertical wells, demonstrating how customized fracture strategies can significantly improve production rates and reduce operational risks [1]. Similarly, Alagoz and Dundar (2023) performed a comparative analysis of production forecasts for fractured versus non-fractured vertical gas wells, offering valuable perspectives on the impact of well stimulation on production efficiency [2]. These studies contribute to the broader understanding of fracture design and well performance, which are crucial for evaluating artificial lift systems in horizontal wells.

Several studies have provided critical insights into optimizing

In the context of unconventional reservoirs, Laalam et al. (2024) focused on the prediction and forecasting of production from unconventional wells in the Wolfcamp A formation using empirical correlations and time series models. Their findings emphasize the importance of advanced modeling techniques in forecasting production behaviors, which are essential for optimizing artificial lift systems like gas lift and ESP [3]. Further exploration of unconventional reservoir recovery was presented by Dehdouh et al. (2024), who highlighted the potential of fishbone drilling technology in the Bakken Formation. Their research demonstrates innovative approaches for increasing reservoir contact and improving recovery rates, which have direct implications for artificial lift system design in challenging formations [4].

Environmental and operational considerations are also critical when optimizing production systems. Al Krmagi (2024) explored the environmental impacts of hydraulic fracturing and discussed various treatment technologies for managing flowback water. This research provides essential insights into the sustainable management of fracturing fluids, which is vital for minimizing the environmental footprint of artificial lift operations [5]. Moreover, Alagoz and Mengen (2024) used advanced shale characterization techniques to investigate mineralogical and chemical properties that influence reservoir behavior, which is critical for understanding fluid dynamics and optimizing artificial lift system design [6].

Further work by Alagoz and Sharma (2021) investigated shalefluid interactions and their effect on proppant embedment using NMR techniques, shedding light on how these interactions impact fracture conductivity and well performance [7]. Alpkiray and Dundar (2023) offered a broader perspective on hydraulic fracturing, addressing its benefits, concerns, and future developments, which are crucial for understanding the role of stimulation techniques in optimizing artificial lift systems [8].

Additionally, Alagoz et al. (2022) introduced new experimental methods for studying proppant embedment in shales, directly linking the findings to the efficiency of fracture conductivity maintenance and the design of artificial lift systems [9].

The role of numerical simulation in optimizing production and artificial lift systems has also been a focal point of recent research. Alagoz, Dundar, and Al Krmagi (2024) developed a numerical simulator for production forecasting in multi-lateral oil wells using MATLAB, which demonstrates the potential of simulation tools in enhancing well performance and artificial lift system efficiency [10].

Similarly, Alagoz and Dundar (2024) explored transient flow and pressure dynamics in gas wells, offering valuable insights into pressure drop analysis and its effect on gas lift and other artificial lift systems [11]. Finally, Alagoz, Dundar, and Al Krmagi (2024) expanded their work by simulating a multilateral saturated reservoir, highlighting the complexities of reservoir dynamics and the critical role of simulation in optimizing artificial lift strategies [12].

Collectively, these studies contribute to the understanding and optimization of artificial lift systems, providing a comprehensive basis for the comparative analysis of gas lift, beam lift, and ESP systems in horizontal wells.

Solution Approach

The decline curve shows the well performance to the end of the natural flowing life of the well (time = 47 days). After this time some form of artificial lift will be needed. Future oil rates and associated bottom hole pressure can be predicted using.

 $q_o = -157.1 \ln(t) + 1098$ $p_{wf} = 2,575 - 2.4(t)$ $q_o = \text{ daily oil rate (STBO/day)}$ $p_{wf} = \text{ bottom hole pressure (psig)}$ t = time (days)

Analyzing the production decline curve reveals a rapid drop in bottom hole pressure, from approximately 4500 psi to 2100 psi over a short period. This sharp decline indicates a significant reduction in reservoir pressure, suggesting that the reservoir lacks sufficient natural drive to sustain prolonged production. The steep pressure decline also points to limited permeability, characteristic of an unconventional reservoir. Such reservoirs typically require enhanced recovery methods, such as artificial lift systems, to maintain production rates as natural reservoir energy quickly diminishes. This paper will sequentially design the gas lift, beam lift, and ESP systems.

2.1. Gas Lift Design

This paper presents the design of a gas lift (GL) system to optimize oil production for the given well, with an economic flow rate limit set at 5 STB/day. Using model equations, the time at which the reservoir becomes economically unviable will be calculated. This analysis aims to assess the performance of the gas lift system and determine when further interventions or adjustments may be necessary to sustain profitability.

 $q_o = -157.1 \ln(t) + 1098 = 5 \text{ stbpd}, \text{ then } t = 1051 \text{ days}.$

Additionally, this paper will calculate the bottom hole pressure at the point beyond which the reservoir becomes economically unprofitable. This calculation will provide insights into the critical pressure threshold that must be maintained to ensure continued profitability in oil production.

 $pwf = 2575 - 2.4(1051) = 52.6 \, psi$

At the end of the analysis, the bottom hole pressure is approximately 53 psi, indicating that the reservoir can achieve the economic flow rate limit of 5 STB/day. The next step involves optimizing the gas-liquid ratio (GLR) design for this well. To proceed, the average density will first be calculated using the Utilities package in the Excel file.

Given a water-oil ratio (WOR) of 1 BW/BO, this indicates a water cut of 50 percent. The specific gravity of the oil can be calculated using the following equation:

38 API= 141.5/SG-131.5 = SG of oil (yoil) = 0.8348

Average specific gravity of the mixture, $\gamma mix = (0.8348+1.02)/2 = 0.9274$ The problem statement indicates the availability of a pipeline capable of supplying sufficient gas for the gas lift (GL) operation, allowing for the option to back pressurize this gas into the pipeline. Consequently, the necessary surface facilities are in place for the operation.

Initially, the design will commence with a gas-liquid ratio (GLR) of 1000 Scf/STB. If the continuous gas lift system fails, additional gas will need to be introduced to sustain production levels. Utilizing the Utilities package in the Excel file, a table will be constructed to facilitate the analysis of these parameters.

t (days)	Qo(model)	Pwf(model)	GLR	Pwf(calculated)	comment
47	493,5268265	2462,2	1000	1064	GL is working
100	374,9882808	2335	1000	938	GL is working
150	311,3302588	2215	1000	872	GL is working
200	266,1641735	2095	1000	827	GL is working
250	231,1306359	1975	1000	793	GL is working
300	202,5061515	1855	1000	765	GL is working
350	178,3044947	1735	1000	742	GL is working
400	157,3400661	1615	1000	722	GL is working
450	138,8481295	1495	1000	705	GL is working
500	122,3065285	1375	1000	688	GL is working
550	107,3428303	1255	1000	673	GL is working
600	93,68204413	1135	1000	659	GL is working
650	81,11533903	1015	1000	646	GL is working
700	69,4803874	895	1000	634	GL is working
750	58,64850657	775	1000	621	GL is working
800	48,51595876	655	1000	609	GL is working
805	47,53776245	643	1000	608	GL is working
810	46,56562312	631	1000	606	GL is working
815	45,59946622	619	1000	605	GL is working
820	44,63921858	607	1000	604	GL is working
825	43,68480835	595	1000	603	MORE GAS NEEDED
830	42,73616498	583	2000	548	GL is working
835	41,7932192	571	2000	547	GL is working
840	40,85590298	559	2000	546	GL is working
850	38,99789313	535	2000	544	MORE GAS NEEDED
860	37,16161489	511	5000	511	MORE GAS NEEDED
870	35,34656577	487	10000	501	MORE GAS NEEDED
880	33,55226053	463	15000	506	MORE GAS NEEDED

 Table 2 – Gas Lift Program

After 825 days, the initial gas-liquid ratio (GLR) of 1000 Scf/STB is no longer effective, necessitating an increase in the gas supply to sustain production. By doubling the amount of gas introduced into the well, production is extended for an additional 25 days. However, at this stage, further increases in gas injection may lead to excessive friction within the system. Continuing to add gas in an attempt to extend production to 1051 days results in a significantly high demand for gas, highlighting the challenges associated with maintaining optimal production levels under these conditions.

Figure 2 – GL system efficiency chart

Above graph and figure is built by using following equations.

$$e_{GL} = \frac{HHP_{out}}{BHP_{in}}$$

$$e_{GL} = \text{Gas lift system efficiency (fraction)}$$

$$HHP_{out} = \text{hydraulic horsepower out (hp)}$$

$$BHP_{in} = \text{break or brake horsepower in (hp)}$$

$$HHP_{out} = 1.7x10^{-5} qp_{wf}$$

$$q = \text{reservoir liquid rate (STBL/day)}$$

$$p_{wf} = \text{pressure left from the reservoir at the point of gas injection (psia)}$$

$$BHP_{in} = \text{ compressor power (BHP)}$$

$$HP \cong 2.23 \times 10^{-4} q \left[\left(\frac{p_{clisch \, arg \, e}}{p_{suction}} \right)^{0.2} - 1 \right]$$

q = gas rate (Scf/Day)both pressures are in psiHP = compressor horsepower

2.2. Beam Lift Design

For the beam lift design, the QROD program is employed to calculate various parameters. Additionally, rod design is performed manually and subsequently verified using an Excel spreadsheet. The pump position is optimized by selecting Point A, as depicted in Figure 3, ensuring safe operation and longevity of the pump.

Figure 3 – Well schematic of beam lift design

To facilitate the operation of this design, the reservoir oil must overcome the curved section of the well. In the calculations, a pump intake pressure of 50 psi is utilized. The pressure at Point B can then be calculated as follows: to elevate the liquid to Point A, allowing the beam lift pump to transport it to the surface. Assuming that frictional pressure drop in the horizontal section of the well is negligible, a minimum pressure of 452 psi is necessary for liquid production in this well. As illustrated in Figures 4 and 5, the majority of the production occurs at pressures exceeding 452 psi, establishing this value as the operational limit for the beam lift design.

P = 1000 ft * 0.433 psi/ft * 0.9274 + 50 psi = 452 psi

This indicates that a pressure of 452 psi is required at Point B

Figure 4 – Bottom hole pressure plot

Figure 5 – Flow rate plot

The graph above indicates a rapid decline in flow rate, suggesting that designing the beam lift (BL) system for a moderate average flow rate may be more advantageous. Given that the initial investment for the beam lift system is significant, utilizing the QROD program will help determine the optimal design flow rate. When the well production drops below this threshold, the pump can be adjusted to reduce speed and maintain the desired flow rate. Initially, the design will not incorporate the largest pump available to maximize immediate production as oil enters the well. This strategy promotes accumulation within the well, which is beneficial for future production, particularly when bottom hole pressure decreases significantly.

Figure 6 – QRod software output

The initial parameters for the beam lift system are established with the understanding that the pump will be gradually slowed down early in the production phase. Consequently, operating at 12 strokes per minute (SPM) will not pose significant issues for the pump.

Another critical consideration is that when the pump is reduced to a very slow speed of 2 SPM, the resulting flow rate will be approximately 47 barrels per day (bpd). This implies that, even when the reservoir is producing at 5 bpd, the overall output will consist of 5 barrels plus the accumulated volume in the well. Although it is unlikely that the beam lift design alone will facilitate the extraction of all available oil from this well, prioritizing higher initial production rates is preferable to achieving lower output later in the well's life cycle.

2.2.1. Beam Lift Rod Design

For the conventional pump design, the following parameters have been established: the surface stroke length is set at 120 inches, and the pump diameter measures 1.75 inches. Anchored tubing is preferred for this application, and one sinker bar is utilized. The top steel rod loading is calculated to be 79.5%, which falls within safe operational limits. API 86E [13] rods are selected for use in this system. The following section provides a

detailed examination of the rod design.

Table	3 -	- Length	of the	rods ((from	OR _{od})
	-		U			×

	1''	7/8''	3/4''	sinker bar
percentage	30	29,5	40,5	0,4
length	2400	2360	3215	25
wr	2,904	2,224	1,634	

Our string is in the oil-water mixture, so we need to calculate buoyancy factor for oil.

38 API= 141.5/SG-131.5 = SG of oil (yoil) = 0.8348

Average specific gravity of the mixtu

ymix = (0.8348 + 1.02)/2 = 0.9274

BF = 1-0.127* ymix = 0.882

Ap=
$$\pi^*[(1.75/2)^2] = 0.243$$

Fo = 2.405*7000*(0.433)* 0.9274=7727 lbf
$\alpha = (S*N2)/70,542 = (120*10^2)/70,542 = 0.24496$
For 3/4" rod – 3215 ft
During downstroke, $Wmin = Wrf - Wd$
Wrf = (3215ft * 1.634 lbf/ft)*(1-0.127*0.9274) = 4772 lbf
$Wd = Wr * L * \alpha = 3215ft * 1.634 lbf/ft * 0.244 = 1287 lbf$
during the upstroke, Wmax = Wrf + Wd + Fo
σ max= Wmax/cross-section area = (4772+1287+7727)/ ($\pi^*(0.75/2)^2$) = 31206 psi
Smin = σ min / Tmin = 7,890 / 140,000 = 0.056
Smax = σ max / Tmin = 31,206 / 140,000 = 0.222
Smax = 0.805*Smin + Sf => 0.222 = 0.805(0.056) + Sf => Sf = 0.177
Nf = 0.25^{*} (Sf)^(-2.417) = $0.25^{*}(0.177)^{-2.417}$ = 16.3
Nt = $(Nf^{10^{6}})/(N^{60^{24}})= (6.3 \times 10^{6})/(12 \times 60^{24}) = 943$ days = Roughly 2.58 years
For 7/8" rod – 2360 ft
During downstroke, Wmin = Wrf – Wd
Wrf = $(2360ft*2.224lbf/ft + 3215ft * 1.634 lbf/ft)*(1-0.127*0.9274) = 9,403 lbf$
$Wd = Wr * L * \alpha = 2360ft * 2.224 lbf/ft * 0.244 = 1,285 lbf$
σ min= Wmin/cross-section area = (9403-1285-1287)/ ($\pi^*(0.875/2)^2$) = 11,359 psi

during the upstroke, Wmax = Wrf + Wd + Fo

 σ max= Wmax/cross-section area = (9403+1285+1287+7727)/ (π *(0.875/2)^2) = 32,765 psi

 $Smin = \sigma min / Tmin = 11,359 / 140,000 = 0.081$

Smax = σ max / Tmin = 32,765 / 140,000 = 0.234

 $Smax = 0.805*Smin + Sf \implies 0.234 = 0.805(0.081) + Sf \implies Sf = 0.168$

 $Nf = 0.25* (Sf)^{(-2.417)} = 0.25*(0.168)^{(-2.417)} = 18.44$

Nt = $(Nf^{10^{6}})/(N^{60^{2}}24) = (18.44 * 10^{6})/(12*60*24) = 1,067$ days = Roughly 2.92 years

For 1" rod – 2400 ft

During downstroke, Wmin = Wrf - Wd

Wrf = (2400ft*2.904lbf/ft+2360ft*2.224lbf/ft+3215ft*1.634lbf/ ft)*(1-0.127*0.9274) =15,551 lbf

 $Wd = Wr * L * \alpha = 2400ft * 2.904 lbf/ft * 0.244 = 1,707 lbf$

 σ min= Wmin/cross-section area = (15551-17707-1285-1287)/ ($\pi^*(1/2)^2$) = 14,351 psi

during the upstroke, Wmax = Wrf + Wd + Fo

σmax= Wmax/cross-section area=(15551+17707+1285+1287+ 7727)/(π*(1/2)^2)=35,088 psi

 $Smin = \sigma min / Tmin = 14,351 / 140,000 = 0.102$

Smax = σ max / Tmin = 35,088 / 140,000 = 0.25

Smax = 0.805*Smin + Sf => 0.234 = 0.805(0.081) + Sf => Sf = 0.168

 $Nf = 0.25* (Sf)^{(-2.417)} = 0.25*(0.168)^{(-2.417)} = 18.6$

Nt = $(Nf^{10^{6}})/(N^{60^{24}}) = (18.6 \times 10^{6})/(12 \times 60^{24}) = 1,076$ days = Roughly 2.92 years

	1"	7/8"	3/4"	sinker bar
percentage	30	29,5	40,5	0,4
length	2400	2360	3215	25
wr	2,904	2,224	1,634	
wr*L	6969,6	5248,64	5253,31	156,55
wrf	15551,85666	9403,138	4772,685	138,11149
area	0,785398163	0,60132	0,441786	
wd	1707,276346	1285,709	1286,853	
sigma-min	14351,97897	11359,29	7890,309	
sigma-max	35088,86553	32765,78	31206,42	
Smin	0,102514136	0,081138	0,056359	
Smax	0,250634754	0,234041	0,222903	
Sf	0,168110875	0,168725	0,177534	
Nf	18,60693932	18,44357	16,30903	
Nt	1076,79047	1067,336	943,8098	days
	2,950110876	2,924209	2,58578	years

In summary, the weakest rod, measuring ³/₄ inches in diameter, is projected to fail after approximately 2.5 years if the pump operates continuously at 12 strokes per minute (SPM). However, as previously noted, the beam lift system will be slowed down significantly earlier than this time frame, which is expected to extend the lifespan of the rods beyond the initial calculations. The table above summarizes the key aspects of the rod design.

Figure 7 – Rod life respect to pumping speed

Figure 7 illustrates the impact of pumping speed on rod life. Utilizing the Utilities package in the Excel file, calculations can be performed to determine the viscosity and frictional losses encountered in the vertical section of the well.

INPUT DATA							
							-
RESET	Flui	d Data					
Oil Gravity	38	API			C	alculate	
Gas Gravity	0,7	T			Oil F	roperties	
Water Gravity	1,02						
Gas/Liquid Ratio	200	Scf/STB					
Water/Oil Ratio	1	bbl/bbl					
	Reservoii	Conditions		Prope	rties At E	Bubble Poir	nt
Pressure	493	psi	B	ubble Point P	ressure	1909,46	psi
Temperature	170	F		Liquid Den	sity	53,0894	lbm/ft3
Pressure Increments	100	nsi		Liquid Visco	osity	0,52051	ср
	Senarato	Conditions		Bo		1,25187	BbI/STB
Separator Temperature	100	F		Rs		400	Scf/bbl
Separator Pressure	65	psi					

INPUT DATA								
RESET	Fluid	Data						
Density	60,7	lbm/ft3						
Viscosity	0,52	ср		Calc	ulate			
	Wellbo	re Data	Pressure Drop		Pressure Drop =	6,1	psi	
Diameter	2,441	in		TTCSSu	ic brop			
Length	8000	ft						
Angle	0	deg						
Roughness	0,0006			0.1	det a			
	Flow	Data	Calculate					
Pressure Drop		psi		FIOW	rate			
Flowrate	493	Bbl/D						

Figure 9 – Friction Pressure Drop Calculation

At this point, the system efficiency can be evaluated using the following formulas:

 $e_{s} = \frac{HHP}{P_{pm}}$ $HHP = \frac{q(p_{disch})}{58,771}$ HHP = hydraulic horse power q = flow rate (Bbl/day) $p_{disch} = \text{pump discharge pressure (psi)}$ $p_{fric} = \text{pipe friction (psi)}$ $p_{T} = \text{pressure needed to exit the well (psi)}$ $p_{wf} = \text{flowing pressure at the bottom (psi)}$ $p_{disch} = 0.433\gamma_{f}(TVD) + p_{fric} + p_{T} - p_{wf}$

2.3. Electric Submersible Pump (ESP) Design

For the electric submersible pump (ESP) design, it is essential to select a pump from the catalog capable of accommodating the required flow rate. Before commencing calculations, it is important to consider the advantages and disadvantages of ESP pumps. These pumps are particularly beneficial in scenarios involving high flow rates, deviated wells, and small locations. However, there are notable drawbacks, such as reduced efficiency due to gas interference, high initial costs for purchase or repair, and elevated electricity expenses. Therefore, it becomes evident that the application of ESP pumps may not be ideal for this unconventional reservoir, especially considering the absence of high flow rates; thus, the smallest ESP pumps may be the most appropriate choice for this reservoir.

On day 47, the recorded flow rate was 493 STB/day. Based on this value, the 400-180 pump from the catalog is suitable for selection.

Background calculations: Flow rate (q) = 493 STB/day

Mixed specific gravity $(\gamma_{mix}) = 1.02(0.5) + 0.8348(0.5) = 0.9274$

Mixed viscosity $(\mu_{mix}) = 0.52$ cp (from the oil properties spreadsheet)

Frictional pressure drop $(\Delta p_fric) = 6$ psi (from the incompressible fluid spreadsheet)

This selected pump provides a head of 18.3 ft per stage and an optimal flow rate of 216 STB/d.

Performance Summary

Best Efficiency Data - 60Hz							
Optimum Flow Rate [BPD]	Operating range [BPD]	Head per Stage [ft]	Power per Stage (HP)	Efficiency [%]			
216	75-300	18.3	0.07	41			
	Best Efficiency Data - 50Hz						
Optimum Flow Rate [M ³ /D]	Operating range [M ³ /D]	Head per Stage [m]	Power per Stage (kW)	Efficiency [%]			
29	10-40	3.8	0.03	41			

Figure	10 -	Pump	400-	180	Performance	Summary	7 [14	ł
--------	------	------	------	------------	-------------	---------	-----	----	---

The net pressure for the pump, at $T = 47$ days, can be	Number of stages = $(856) / (7.3486) \approx 117$ stages
calculated as follows:	To calculate the horsepower required, the following formula is applied:
$\Delta p = 8000 (0.433)(0.9274) + 100 + 6 - 2462 = 856$ psi	Horsepower =1.7×10−5×493×7.3486≈0.0615 hp/
Δp=8000(0.433)(0.9274)+100+6-2462=856psi	stage
The pressure drop per stage (Δps) is given by;	
$\Delta ps = (18.3)(0.433)(0.9274) = 7.3486 \text{ psi/stage}$	Thus, the total horsepower needed is:
	Total horsepower = $(0.0615 \text{ hp/stage}) \times 117 \text{ stages}$ $\approx 7.2 \text{ HP}$
using:	Consequently, a 10 HP motor is selected from the catalog to meet the requirements.

60Hz						50Hz							
HP	kW	Volts	Amps	Туре	Length	Weight	HP	kW	Volts	Amps	Туре	Length	Weight
					[ft]	[lb]						[m]	[kg]
10	10 7.5	436	15	S	5.1	240	8.3	6.2	363	15	S	1.55	109.0
10				UT	4.9	200					UT	1.49	90.7

Figure 11 – Motor Selection Chart [14]

when T=500 days,

 $\Delta p = 8000(0.433)(0.9274) + 100 + 6 - 1375 = 1943 \text{ psi}$

Number of stages = 1943/7.3486 = 265 stages.

Horsepower = $1.7 \times 10-5 \times 122 \times 7.3486 = 0.015$ hp/stage

Total horsepower = 0.015 hp/stage * 265 stages = 4 HP

when T=850 days,

 $\Delta p = 8000(0.433)(0.9274) + 100 + 6 - 535 = 2788 \text{ psi}$

Number of stages = 2788/7.3486 = 379 stages.

Horsepower = 1.7 x 10-5 x 39 x 7.3486 = 0.0048 hp/stage

Total horsepower = 0.0048 hp/stage * 379 stages = 1.85 HP

Table 5 – ESP Design Summary

T, days	Q, stb/day	net pressure		power	# of stages
47	493	2462	0.11	7.20	117
500	122	1375	0.37	4.00	265
850	39	535	0.11	1.85	379

The pump model 400-180 has a limit on the number of stages, which is capped at 341. This limitation presents an additional constraint for the design of the ESP system.

Figure 12 – ESP Pump Efficiency Chart

Upon examining the efficiency chart, it is evident that high efficiency is not achieved during the initial high flow rate phase, which occurs shortly after the 47-day mark in production.

Pump 400-180

60 Hz Data

Figure 13 – ESP 400-180 Pump Hz Data [14]

The chart above, Figure 13, was utilized for the efficiency calculations. With the gas lift system, production is not sustained when the bottom hole pressure (Pwf) falls below 535 psi. In contrast, the beam lift system allows for oil production until Pwf reaches 452 psi. The use of an ESP pump is not recommended for this type of unconventional reservoir.

Conclusion

In conclusion, the evaluation of artificial lift systems for the unconventional reservoir under consideration highlights the distinct operational thresholds and efficiency limitations of each method. The gas lift system demonstrates a minimum bottom hole pressure requirement of 535 psi for sustained production, while the beam lift system maintains production capabilities down to a pressure of 452 psi. Given these findings, the beam lift system emerges as the more viable option for this well, particularly considering its ability to produce at lower pressures and its relative cost-effectiveness in the context of the reservoir's characteristics.

The study emphasizes the importance of selecting an appropriate artificial lift method tailored to the specific conditions of the reservoir, ensuring optimal production rates and extending the economic life of the well. Future work should focus on monitoring and adjusting the chosen system in response to ongoing reservoir depletion, as well as exploring potential enhancements to improve efficiency and adaptability in unconventional reservoirs. Overall, this analysis provides valuable insights into the effective management of hydrocarbon production through the strategic application of artificial lift technologies.

References

- Alagoz E, Dündar EC. (2024) A Comparative Analysis of Production Forecast for Vertical Gas Wells: Fractured vs. Non-Fractured. International Journal of Earth Sciences Knowledge and Applications 6: 194-202. <u>https://doi.org/10.23880/ppej-16000371</u>.
- Alagoz E, Dündar EC (2024) A Comparative Analysis of Production Forecast for Vertical Gas Wells: Fractured vs. Non-Fractured. International Journal of Earth Sciences Knowledge and Applications, 6: 194-202. <u>https://www.ijeska.com/index.php/ijeska/article/ view/403</u>
- 3. Laalam A, Khalifa H, Ouadi H, Keltoum Benabid M, Stanley Tomomewo O, et al. (2024) Evaluation of

empirical correlations and time series models for the prediction and forecast of unconventional wells production in Wolfcamp A formation. In Unconventional Resources Technology Conference 2883-2910. Unconventional Resources Technology Conference (URTeC). https://doi.org/10.15530/urtec-2024-4043738.

- Dehdouh A, Bettir N, Khalifa H, Kareb A, Al Krmagi, M (2024) Optimizing Recovery in Unconventional Reservoirs by Advancing Fishbone Drilling Technology in the Bakken Formation, Williston Basin. In ARMA US Rock Mechanics/Geomechanics Symposium ARMA. <u>https://doi.org/10.56952/ARMA-2024-0919.</u>
- Al Krmagi M (2024) Environmental Impacts and Treatment Technologies in Hydraulic Fracturing Water Management. International Journal of Earth Sciences Knowledge and Applications 6: 262-267. <u>https://</u> www.ijeska.com/index.php/ijeska/article/view/410.
- Al Krmagi M (2024) Environmental Impacts and Treatment Technologies in Hydraulic Fracturing Water Management. International Journal of Earth Sciences Knowledge and Applications 6: 262-267. <u>https:// doi.org/10.23880/ppej-16000380</u>.
- Alagoz E, Sharma MM (2021) Investigating shale-fluid interactions and its effect on proppant embedment using NMR techniques. In ARMA US Rock Mechanics/

Geomechanics Symposium ARMA. <u>https://onepetro.</u> org/ARMAUSRMS/proceedings-abstract/ARMA21/ All-ARMA21/ARMA-2021-1129/467923.

- Alpkiray M, Dundar EC (2023) A Glance on Hydraulic Fracturing: Benefits, Concerns, and Future. Science Journal of Energy Engineering 11: 19-25. https://doi. org/10.11648/j.sjee.20231102.11.
- Alagoz E, Wang H, Russell RT, Sharma MM (2020) New experimental methods to study proppant embedment in shales. In ARMA US Rock Mechanics/Geomechanics Symposium ARMA. <u>https://doi.org/10.1007/</u> <u>s00603-021-02646-1</u>.
- Alagoz E, Dundar EC, Al Krmagi M (2024) Numerical Simulator of Production Forecast for Multi-Lateral Oil Well using MATLAB-based Simulator. Progresses in Petrochemical Science, Crimson Publishers. <u>https:// crimsonpublishers.com/pps/pdf/PPS.000643.pdf.</u>
- 11. Alagoz E, Dundar EC (2024) Forecasting Gas Well Production and Analyzing Pressure Dynamics: A Study of Transient Flow and Pressure Drop in Natural Gas Formation. Environ Sci 2: 000115. <u>https://doi.org/10.23880/jeesc-16000115</u>
- 12. Alagoz E, Dundar EC, Al Krmagi M (2024) Numerical Simulation of a Multilateral Saturated Reservoir using MATLAB-based Simulator. Petroleum and Petrochemical Engineering Journal, Medwin Publishers.

Copyright: @2024 Ekrem Alagoz, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.