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Abstract
This research conducts an in-depth analysis of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 
for the detection and prediction of viral diseases. By employing a comprehensive dataset that includes detailed information on 
20 different viral infections, we assessed the efficacy of these deep learning models. The dataset encompasses various attributes 
such as symptoms, transmission modes, affected regions, and treatment options. Throughout the training process, the CNN model 
consistently reduced its training loss from 5.0518 to 3.0981 over 10 epochs, while the RNN model saw a similar decrease from 
3.0722 to 3.0248. Despite these improvements in training performance, both models faced significant challenges with validation 
accuracy, which remained at 0% throughout the training period. This indicates issues such as data imbalance and the necessity 
for more sophisticated preprocessing techniques. Moreover, our time complexity analysis demonstrated that both models are 
computationally efficient, completing 10 epochs in approximately 1.37 seconds for CNN and 1.36 seconds for RNN. These findings 
imply that while the models are efficient, they may lack the complexity needed to fully capture the dataset's nuances. To enhance 
model performance, future research should consider increasing the number of epochs, exploring deeper network architectures, 
and integrating hybrid models that combine CNN and RNN approaches. Additionally, implementing advanced techniques such as 
transfer learning, refined symptom tokenization, and improved management of class imbalances will be crucial for boosting the 
models' predictive capabilities and generalization. These strategies can lead to more robust applications in medical diagnostics 
and public health monitoring. This study provides valuable insights into the strengths and limitations of CNN and RNN models, 
paving the way for future advancements in deep learning-based medical diagnostics.

Comparative Analysis of CNN and RNN Techniques for Viral Disease Detection and Prediction: 
An Experimental Study

  Submitted: 02 July 2024	 Accepted: 08 July 2024	 Published:  16 July 2024

Citation: K Vijaya Bhaskar*1, et al. (2024) Comparative Analysis of CNN and RNN Techniques for Viral Disease Detection and 
Prediction: An Experimental Study J of Vaccines, Medicine and Health Care Research Article, 2(3): 01-20.

*Corresponding Author: Vijaya Bhaskar K, Department of Computer Science and Engineering, Mother Theresa Insti-
tute of Engineering and Technology, Palamaner, A.P.

Page 1 of 20

JOURNAL OF VACCINES, MEDICINE AND HEALTH CARE

Research Article
Volume 2 | Issue 3

JOURNAL OF VACCINES, MEDICINE AND HEALTH CARE

Keywords: Viral Disease Detection, Deep Learning, Convolutional Neural Networks (CNN), Recurrent Neural Networks 
(RNN), Medical Diagnostics, Machine Learning, Data Preprocessing, Predictive Modeling. 



Page 2 of 20JOURNAL OF VACCINES, MEDICINE AND HEALTH CARE

Introduction
The significant advancements in deep learning have transformed 
various fields, including medical diagnostics, by enabling more 
precise and efficient disease detection and prediction. Among 
these advancements, Convolutional Neural Networks (CNN) 
and Recurrent Neural Networks (RNN) have emerged as potent 
tools for analyzing complex medical data [1]. This research fo-
cuses on a comparative analysis of CNN and RNN techniques in 
the context of viral disease detection and prediction, utilizing a 
dataset that covers a broad spectrum of viral diseases with de-
tailed attributes such as symptoms, transmission modes, affected 
regions, and treatment options [2]. Viral diseases pose a major 
challenge to global health due to their rapid spread and severe 
impact on populations. Accurate and timely detection is critical 
for effective management and control [3]. Traditional diagnostic 
methods often rely on clinical evaluations and laboratory tests, 
which can be time-consuming and resource-intensive. Deep 
learning models, particularly CNNs and RNNs, offer a prom-
ising alternative by providing automated and scalable solutions 
for disease detection and prediction [4].

CNNs are renowned for their ability to automatically and effi-
ciently extract spatial features from image data, making them 
highly effective for medical imaging applications [1,3]. Con-
versely, RNNs are designed to handle sequential data, making 
them suitable for time-series analysis and natural language pro-
cessing tasks [4], [21]. These unique capabilities make them ideal 
for analyzing the diverse and complex dataset used in this study, 
which includes textual descriptions of symptoms and categori-
cal variables representing various disease attributes. The dataset 
used in this research consists of 20 well-documented viral dis-
eases, providing a rich foundation for experimental evaluation 
[2]. Each disease is characterized by its symptoms, transmission 
mode, affected regions, and treatment options. This comprehen-
sive dataset allows for a thorough comparison of CNN and RNN 
models in terms of their ability to accurately detect and predict 
viral diseases [5]. The data preprocessing steps involved encod-
ing categorical variables and tokenizing symptom descriptions, 
ensuring that the models could effectively learn from the input 
data.

Our experimental results highlight the strengths and limitations 
of CNN and RNN models. The CNN model demonstrated a 
steady decline in training loss from 5.0518 to 3.0981 over 10 
epochs, while the RNN model exhibited a similar pattern, with 
training loss decreasing from 3.0722 to 3.0248 [6], [8]. De-
spite these improvements in training performance, both models 
faced challenges with validation accuracy, which remained at 
0% throughout the training period. These findings underscore 
the importance of addressing issues such as data imbalance and 
the complexity of symptom patterns that these models need to 
capture [7], [15]. Time complexity analysis revealed that both 
models are computationally efficient, with the CNN and RNN 

completing 10 epochs in approximately 1.37 and 1.36 seconds, 
respectively [22], [19]. However, the low validation accuracy 
suggests that more advanced preprocessing techniques, model 
tuning, and potentially larger and more diverse datasets are re-
quired to enhance the generalization and predictive accuracy of 
these models. This research provides valuable insights into the 
capabilities and limitations of CNN and RNN models for viral 
disease detection, paving the way for future enhancements and 
applications in medical diagnostics and public health monitor-
ing [30], [23]. By comparing these two prominent deep learning 
techniques, this study aims to contribute to the development of 
more effective and efficient diagnostic tools that can ultimately 
improve patient outcomes and support global health initiatives 
[10], [13]. 

Research Methodology
This study employs a systematic approach to assess the effective-
ness of Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN) in the detection and prediction of viral 
diseases. Initially, a detailed dataset comprising 20 well-docu-
mented viral diseases was assembled, featuring attributes such 
as symptoms, transmission modes, affected regions, and treat-
ment options. This dataset formed the basis for our experimental 
evaluation, facilitating a comprehensive comparison of the two 
deep learning methodologies. Critical preprocessing steps in-
cluded encoding categorical variables and tokenizing symptom 
descriptions, ensuring that the models could accurately interpret 
the input data [27], [28].

Following preprocessing, the refined data was used to train CNN 
and RNN models over multiple epochs. The CNN model was 
designed to automatically extract spatial features from the in-
put data, leveraging its capability in handling image-like inputs, 
whereas the RNN model was employed for its proficiency in 
processing sequential data, making it suitable for analyzing the 
time-series nature of symptom progression and transmission 
modes [29], [30]. The models were evaluated based on their 
training and validation performance, focusing on metrics such 
as loss and accuracy over 10 epochs. The CNN model showed a 
steady decrease in training loss from 5.0518 to 3.0981, while the 
RNN model exhibited a similar trend, with training loss reducing 
from 3.0722 to 3.0248. However, both models faced difficulties 
in improving validation accuracy, underscoring challenges like 
data imbalance and the complexity of symptom patterns [27], 
[28]. This methodological approach provides valuable insights 
into the capabilities and limitations of CNN and RNN models, 
paving the way for future advancements in medical diagnostics 
and public health monitoring [27], [29], [30].

Research Area
This research delves into the application and comparison of deep 
learning techniques, particularly Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN), for viral 
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disease detection and prediction. Utilizing a dataset that includes 
a variety of viral diseases, the study captures detailed attributes 
such as symptoms, transmission modes, affected regions, and 
treatment options. This extensive dataset provides a solid foun-
dation for assessing the efficacy of CNN and RNN models in 
medical diagnostics. The primary objective is to explore how 
these deep learning models can automate and enhance the accu-
racy of disease detection and prediction, addressing significant 
global health challenges posed by viral diseases [27], [28].

CNNs are especially proficient at extracting spatial features from 
image data, making them highly effective for medical imaging 
applications where spatial patterns are crucial for diagnosis [29]. 
Conversely, RNNs are adept at processing sequential data, mak-
ing them suitable for analyzing the progression of symptoms and 
understanding transmission patterns over time. By comparing 
these two models, the research aims to identify the strengths and 
limitations of each approach in the context of viral disease detec-
tion. This comparison underscores the potential of deep learning 
models in improving diagnostic accuracy while highlighting the 
need for advanced data preprocessing and model tuning to ad-
dress issues such as data imbalance and the complexity of symp-
tom patterns [30], [29]. This study provides valuable insights 
that can inform future enhancements in medical diagnostics and 
public health monitoring, ultimately contributing to the develop-
ment of more effective diagnostic tools [29], [30].

Literature Review
Significant advancements in medical diagnostics have been 
achieved through the integration of deep learning techniques, 
particularly Convolutional Neural Networks (CNN) and Recur-
rent Neural Networks (RNN). These models have transformed 
disease detection and prediction, offering more precise and effi-
cient solutions compared to traditional methods. This literature 
review examines the application of CNN and RNN in medical 
diagnostics, focusing on their role in viral disease detection and 
prediction [1]-[30].

Convolutional Neural Networks (CNN) in Medical Diagnostics
CNNs are extensively employed in medical imaging due to their 
capability to automatically and efficiently extract spatial features 
from image data. These models are especially effective in ana-
lyzing complex medical data where spatial patterns are critical 
for diagnosis. For example, CNNs have been successfully used 
to analyze chest X-ray images for COVID-19 detection, demon-
strating high accuracy and reliability in identifying infected cas-
es [1]. Similarly, Kaur et al. showcased the use of CNNs for 
real-time COVID-19 diagnosis, with their model showing con-
sistent improvement in training accuracy, underscoring the po-
tential of CNNs in medical diagnostics [2]. Beyond COVID-19, 
the application of CNNs extends to other viral diseases and 
medical conditions. Farhad Morteza Pour Shiri et al. provided a 
comprehensive overview of the effectiveness of CNNs in vari-

ous medical applications, including the detection of liver diseas-
es and cancer, highlighting the versatility of CNNs in handling 
diverse types of medical imaging data [3]. This versatility makes 
CNNs an invaluable tool in the healthcare industry.

Recurrent Neural Networks (RNN) in Medical Diag-
nostics
RNNs, designed to handle sequential data, are suitable for tasks 
involving time-series analysis and natural language processing. 
This ability is particularly beneficial for tracking disease pro-
gression and understanding transmission patterns. RNNs have 
been employed to analyze symptom  progression in patients 
with chronic diseases, providing valuable insights into disease 
management and treatment planning [4]. The application of 
RNNs in viral disease detection is also significant. Singh et al. 
explored RNNs for liver disease detection, demonstrating the 
model's ability to effectively process and analyze sequential data 
[5]. Another study highlighted the use of RNNs in predicting 
COVID-19 transmission patterns, showcasing their potential in 
public health monitoring and epidemic control [6].

Comparative Analysis of CNN and RNN
Comparative analysis of CNN and RNN models in medical di-
agnostics reveals distinct strengths and limitations of each ap-
proach. CNNs excel in scenarios where spatial data is predomi-
nant, such as medical imaging, while RNNs are adept at handling 
sequential data, making them ideal for time-series analysis and 
symptom progression tracking [7]. Both models, however, face 
challenges related to data imbalance and the complexity of 
symptom patterns. Dainotti et al. emphasized the importance 
of addressing these issues through advanced data preprocessing 
and model tuning to enhance the performance of deep learning 
models in medical diagnostics [8]. Sharma et al. further high-
lighted the need for larger and more diverse datasets to improve 
the generalization and predictive accuracy of these models [9].

Future Directions
Integrating CNN and RNN models offers a promising direction 
for future research. Hybrid models that combine the strengths of 
both approaches could provide more comprehensive solutions 
for disease detection and prediction. For instance, combining 
CNNs' spatial feature extraction capabilities with RNNs' sequen-
tial data processing could enhance the accuracy and reliability of 
medical diagnostics [10]. Additionally, the use of transfer learn-
ing and advanced data augmentation techniques could further 
improve the performance of deep learning models in medical di-
agnostics. Studies have demonstrated that pre-trained models on 
large datasets can significantly reduce training time and improve 
accuracy, making them valuable tools in resource-constrained 
settings [11].
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process and analyze sequential data [5]. Another study highlighted the use of RNNs in predicting COVID-19 transmission 

patterns, showcasing their potential in public health monitoring and epidemic control [6]. 

 

Comparative Analysis of CNN and RNN 

Comparative analysis of CNN and RNN models in medical diagnostics reveals distinct strengths and limitations of each 

approach. CNNs excel in scenarios where spatial data is predominant, such as medical imaging, while RNNs are adept 

at handling sequential data, making them ideal for time-series analysis and symptom progression tracking [7]. Both 

models, however, face challenges related to data imbalance and the complexity of symptom patterns. Dainotti et al. 

emphasized the importance of addressing these issues through advanced data preprocessing and model tuning to enhance 

the performance of deep learning models in medical diagnostics [8]. Sharma et al. further highlighted the need for larger 

and more diverse datasets to improve the generalization and predictive accuracy of these models [9]. 
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strengths of both approaches could provide more comprehensive solutions for disease detection and prediction. For 

instance, combining CNNs' spatial feature extraction capabilities with RNNs' sequential data processing could enhance 

the accuracy and reliability of medical diagnostics [10]. Additionally, the use of transfer learning and advanced data 

augmentation techniques could further improve the performance of deep learning models in medical diagnostics. Studies 

have demonstrated that pre-trained models on large datasets can significantly reduce training time and improve accuracy, 

making them valuable tools in resource-constrained settings [11]. 
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Table 2.1 offers an extensive summary of recent research employing deep learning methods in medical diagnostics, 

concentrating on Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). Reference [1] delivers 

a comparative analysis of CNN and RNN models for COVID-19 chest X-ray imaging, showcasing their high accuracy 

and robustness in identifying COVID-19 cases. However, it also highlights the limitation of being restricted to COVID-

19 data, suggesting future research should aim to generalize these models to other diseases. Similarly, reference [2] 

examines a real-time COVID-19 diagnosis system using an optimized CNN architecture with data augmentation, 

demonstrating improved training accuracy. The study emphasizes the potential of CNNs in real-time applications but 

notes the need for these models to be applied to other medical diagnoses to increase their utility. 

 

References [3] and [4] broaden the application of deep learning beyond COVID-19. Reference [3] provides a detailed 

performance comparison of CNN, RNN, LSTM, and GRU models across various medical datasets, highlighting the 

thorough nature of the analysis but also pointing out its broad, non-disease-specific focus. The study suggests refining 

model comparisons and applying them to specific diseases. Conversely, reference [4] focuses on liver disease prediction 

using feature selection and classification algorithms, demonstrating effective prediction with selected features. It 

underscores the merits of effective feature selection but acknowledges its limitation to liver diseases, advocating for 

expanding the approach to other diseases and enhancing feature selection techniques. These studies collectively illustrate 

the diverse applications and potential improvements of deep learning models in medical diagnostics. 

 

The remaining references further illustrate the versatility and challenges of deep learning models in different contexts. 

Reference [5] compares CNN and RNN models for intrusion detection using network data, achieving high detection 

accuracy but suggesting the need for adaptation to medical data. Reference [6] presents a comparative study of multiple 

machine learning models for COVID-19 detection, calling for extension to other infectious diseases. Reference [7] 

utilizes GloVe word vector representation for sentiment analysis, highlighting its effectiveness for natural language 

processing tasks while proposing its application to medical text data for patient sentiment analysis. Reference [8] reviews 

traffic classification, identifying key issues and future research areas that can improve data preprocessing in medical 

diagnostics. References [9] and [10] focus on cancer detection and liver disease prediction, respectively, showcasing high 

accuracy and effective prediction but recommending broader disease applications and refined algorithms. Lastly, 

reference [11] discusses various deep learning techniques in healthcare, emphasizing their wide application but 

advocating for a focus on specific diseases and advanced techniques [1]-[11]. 

 

Table 2.2: Summary of Common Drawbacks and Proposed Enhancements in Deep Learning 

Techniques for Medical Diagnostics [1]-[11]. 

S. 

No. 

Reference 

Number 
Common Drawback Existing System Proposed System 
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Table 2.1 offers an extensive summary of recent research em-
ploying deep learning methods in medical diagnostics, concen-
trating on Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN). Reference [1] delivers a comparative 
analysis of CNN and RNN models for COVID-19 chest X-ray 
imaging, showcasing their high accuracy and robustness in iden-
tifying COVID-19 cases. However, it also highlights the lim-
itation of being restricted to COVID-19 data, suggesting future 
research should aim to generalize these models to other diseases. 
Similarly, reference [2] examines a real-time COVID-19 diag-
nosis system using an optimized CNN architecture with data 
augmentation, demonstrating improved training accuracy. The 
study emphasizes the potential of CNNs in real-time applica-
tions but notes the need for these models to be applied to other 
medical diagnoses to increase their utility.

References [3] and [4] broaden the application of deep learn-
ing beyond COVID-19. Reference [3] provides a detailed per-
formance comparison of CNN, RNN, LSTM, and GRU models 
across various medical datasets, highlighting the thorough nature 
of the analysis but also pointing out its broad, non-disease-spe-
cific focus. The study suggests refining model comparisons and 
applying them to specific diseases. Conversely, reference [4] 
focuses on liver disease prediction using feature selection and 
classification algorithms, demonstrating effective prediction 
with selected features. It underscores the merits of effective fea-

ture selection but acknowledges its limitation to liver diseases, 
advocating for expanding the approach to other diseases and en-
hancing feature selection techniques. These studies collectively 
illustrate the diverse applications and potential improvements of 
deep learning models in medical diagnostics.

The remaining references further illustrate the versatility and 
challenges of deep learning models in different contexts. Ref-
erence [5] compares CNN and RNN models for intrusion detec-
tion using network data, achieving high detection accuracy but 
suggesting the need for adaptation to medical data. Reference 
[6] presents a comparative study of multiple machine learning 
models for COVID-19 detection, calling for extension to oth-
er infectious diseases. Reference [7] utilizes GloVe word vector 
representation for sentiment analysis, highlighting its effective-
ness for natural language processing tasks while proposing its 
application to medical text data for patient sentiment analysis. 
Reference [8] reviews traffic classification, identifying key issues 
and future research areas that can improve data preprocessing in 
medical diagnostics. References [9] and [10] focus on cancer 
detection and liver disease prediction, respectively, showcasing 
high accuracy and effective prediction but recommending broad-
er disease applications and refined algorithms. Lastly, reference 
[11] discusses various deep learning techniques in healthcare, 
emphasizing their wide application but advocating for a focus on 
specific diseases and advanced techniques [1]-[11].

techniqu
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the diverse applications and potential improvements of deep learning models in medical diagnostics. 

 

The remaining references further illustrate the versatility and challenges of deep learning models in different contexts. 

Reference [5] compares CNN and RNN models for intrusion detection using network data, achieving high detection 

accuracy but suggesting the need for adaptation to medical data. Reference [6] presents a comparative study of multiple 

machine learning models for COVID-19 detection, calling for extension to other infectious diseases. Reference [7] 

utilizes GloVe word vector representation for sentiment analysis, highlighting its effectiveness for natural language 

processing tasks while proposing its application to medical text data for patient sentiment analysis. Reference [8] reviews 

traffic classification, identifying key issues and future research areas that can improve data preprocessing in medical 

diagnostics. References [9] and [10] focus on cancer detection and liver disease prediction, respectively, showcasing high 

accuracy and effective prediction but recommending broader disease applications and refined algorithms. Lastly, 

reference [11] discusses various deep learning techniques in healthcare, emphasizing their wide application but 

advocating for a focus on specific diseases and advanced techniques [1]-[11]. 

 

Table 2.2: Summary of Common Drawbacks and Proposed Enhancements in Deep Learning 

Techniques for Medical Diagnostics [1]-[11]. 

S. 

No. 

Reference 

Number 
Common Drawback Existing System Proposed System 

1 [1] 
Limited to COVID-19 

data [1] 

Comparative analysis of 

CNN and RNN for 

COVID-19 chest X-ray 

images [1]  

Generalize models to 

other diseases [1] 

2 [2] 
Focused only on 

COVID-19  [2]  

Real-time COVID-19 

diagnosis using CNN with 

data augmentation [2]  

Apply models to other 

real-time medical 

diagnoses [2]  

3 [3] 
Broad, non-disease-

specific focus   [3] 

Performance comparison 

of CNN, RNN, LSTM, and 

GRU models [3]  

Refine model 

comparisons and apply to 

specific diseases [3] 

4 [4] 
Specific to liver 

diseases [4]   

Liver disease prediction 

using feature selection and 

classification [4]  

Expand to other diseases 

and enhance feature 

selection techniques [4]  

5 [5] 
Focus on network data 

[5]  

Comparative study of 

CNN and RNN for 

intrusion detection [5]  

Adapt techniques to 

medical data for anomaly 

detection [5]  

6 [6] 
Focused on COVID-

19 [6]  

Comparative study of 

various ML models for 

COVID-19 detection [6]  

Extend to other infectious 

diseases [6]  

7 [7] 
Focus on sentiment 

analysis  [7]  

Sentiment analysis using 

GloVe word vectors [7]  

Apply to medical text data 

for patient sentiment 

analysis [7] 

8 [8] 
Focus on network 

traffic [8]  

Review of traffic 

classification [8]  

Improve data 

preprocessing in medical 

diagnostics [8]  

9 [9] Focus on cancer [9]  
Deep learning models for 

cancer detection [9]  

Apply techniques to viral 

diseases, enhance models 

[9]  

10 [10] 
Specific to liver 

diseases [10]  

Liver disease prediction 

using supervised ML 

algorithms [10]  

Broaden scope to other 

diseases, refine 

algorithms [10]  
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1 [1] 
Limited to COVID-19 

data [1] 

Comparative analysis of 

CNN and RNN for 

COVID-19 chest X-ray 

images [1]  

Generalize models to 

other diseases [1] 

2 [2] 
Focused only on 

COVID-19  [2]  

Real-time COVID-19 

diagnosis using CNN with 

data augmentation [2]  

Apply models to other 

real-time medical 

diagnoses [2]  

3 [3] 
Broad, non-disease-

specific focus   [3] 

Performance comparison 

of CNN, RNN, LSTM, and 

GRU models [3]  

Refine model 

comparisons and apply to 

specific diseases [3] 

4 [4] 
Specific to liver 

diseases [4]   

Liver disease prediction 

using feature selection and 

classification [4]  

Expand to other diseases 

and enhance feature 

selection techniques [4]  

5 [5] 
Focus on network data 

[5]  

Comparative study of 

CNN and RNN for 

intrusion detection [5]  

Adapt techniques to 

medical data for anomaly 

detection [5]  

6 [6] 
Focused on COVID-

19 [6]  

Comparative study of 

various ML models for 

COVID-19 detection [6]  

Extend to other infectious 

diseases [6]  

7 [7] 
Focus on sentiment 

analysis  [7]  

Sentiment analysis using 

GloVe word vectors [7]  

Apply to medical text data 

for patient sentiment 

analysis [7] 

8 [8] 
Focus on network 

traffic [8]  

Review of traffic 

classification [8]  

Improve data 

preprocessing in medical 

diagnostics [8]  

9 [9] Focus on cancer [9]  
Deep learning models for 

cancer detection [9]  

Apply techniques to viral 

diseases, enhance models 

[9]  

10 [10] 
Specific to liver 

diseases [10]  

Liver disease prediction 

using supervised ML 

algorithms [10]  

Broaden scope to other 

diseases, refine 

algorithms [10]  

11 [11] General focus [11] 
Various DL techniques in 

healthcare [11]  

Focus on specific 

diseases, integrate 

advanced DL techniques 

[11]  

 
Table 2.2 offers an in-depth overview of the common drawbacks identified in recent studies that employ deep learning 

techniques in medical diagnostics, focusing specifically on Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN). Each reference pinpoints specific limitations within existing systems and suggests enhancements to 

overcome these challenges. For example, references [1] and [2] concentrate on COVID-19 diagnostics but acknowledge 

that their models are restricted to COVID-19 data, proposing that future research should strive to generalize these models 

to other diseases to increase their utility. Likewise, references [3] and [4] address the broad, non-disease-specific scope 

of their studies, recommending more precise model comparisons and applications to specific diseases to enhance 

diagnostic accuracy and effectiveness. 

 

The other references further investigate various aspects and challenges of deep learning models across different contexts. 

Reference [5] evaluates CNN and RNN models for intrusion detection, achieving high detection accuracy but stressing 

the necessity of adapting these techniques to medical data for broader applicability. Reference [6] suggests extending the 

use of multiple machine learning models from COVID-19 detection to other infectious diseases. Reference [7] 

demonstrates the effectiveness of GloVe word vector representation for sentiment analysis and proposes its application 

to medical text data for analyzing patient sentiments. Reference [8] reviews traffic classification issues and recommends 

improvements in data preprocessing for medical diagnostics. References [9] and [10] focus on cancer detection and liver 

disease prediction, respectively, advocating for wider disease applications and refined algorithms. Finally, reference [11] 

explores various deep learning techniques in healthcare, urging a more focused application on specific diseases and the 

integration of advanced techniques to enhance overall diagnostic performance [1]-11]. 

 

 

 

Existing System 

The current state of deep learning applications in medical diagnostics includes a wide range of techniques, with a strong 

emphasis on Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). These systems have been 

extensively applied to address specific medical issues, particularly focusing on COVID-19 diagnostics. For example, 

Nallakaruppan et al. [1] performed a comparative analysis of CNN and RNN models on COVID-19 chest X-ray images, 

showcasing the high accuracy and robustness of these models. Similarly, Kaur et al. [2] developed a real-time COVID-

19 diagnosis system using a compact CNN architecture with data augmentation, which demonstrated improved training 

accuracy and potential for real-time application. Despite these advancements, both studies pointed out the limitation of 

their models being restricted to COVID-19 data, indicating the need for broader applicability to enhance their utility. 

 

Table 2.2 Offers an in-depth overview of the common 
drawbacks identified in recent studies that employ deep learning 
techniques in medical diagnostics, focusing specifically 
on Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN). Each reference pinpoints specific 
limitations within existing systems and suggests enhancements 
to overcome these challenges. For example, references [1] and 
[2] concentrate on COVID-19 diagnostics but acknowledge 
that their models are restricted to COVID-19 data, proposing 
that future research should strive to generalize these models to 
other diseases to increase their utility. Likewise, references [3] 
and [4] address the broad, non-disease-specific scope of their 
studies, recommending more precise model comparisons and 
applications to specific diseases to enhance diagnostic accuracy 
and effectiveness.

The other references further investigate various aspects and 
challenges of deep learning models across different contexts. 
Reference [5] evaluates CNN and RNN models for intrusion 
detection, achieving high detection accuracy but stressing the 
necessity of adapting these techniques to medical data for 
broader applicability. Reference [6] suggests extending the use 
of multiple machine learning models from COVID-19 detection 
to other infectious diseases. Reference [7] demonstrates the 

effectiveness of GloVe word vector representation for sentiment 
analysis and proposes its application to medical text data for 
analyzing patient sentiments. Reference [8] reviews traffic 
classification issues and recommends improvements in data 
preprocessing for medical diagnostics. References [9] and 
[10] focus on cancer detection and liver disease prediction, 
respectively, advocating for wider disease applications and 
refined algorithms. Finally, reference [11] explores various 
deep learning techniques in healthcare, urging a more focused 
application on specific diseases and the integration of advanced 
techniques to enhance overall diagnostic performance [1]-11].

Existing System
The current state of deep learning applications in medical 
diagnostics includes a wide range of techniques, with a 
strong emphasis on Convolutional Neural Networks (CNN) 
and Recurrent Neural Networks (RNN). These systems have 
been extensively applied to address specific medical issues, 
particularly focusing on COVID-19 diagnostics. For example, 
Nallakaruppan et al. [1] performed a comparative analysis of 
CNN and RNN models on COVID-19 chest X-ray images, 
showcasing the high accuracy and robustness of these models. 
Similarly, Kaur et al. [2] developed a real-time COVID-19 
diagnosis system using a compact CNN architecture with 
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data augmentation, which demonstrated improved training 
accuracy and potential for real-time application. Despite these 
advancements, both studies pointed out the limitation of their 
models being restricted to COVID-19 data, indicating the need 
for broader applicability to enhance their utility.

Beyond COVID-19, deep learning systems have also been 
explored in other medical fields. For instance, Singh et al. [4] 
focused on liver disease prediction using feature selection 
and classification algorithms, which proved effective with 
selected features but were limited to liver diseases. Another 
comprehensive study by Farhad Morteza Pour Shiri et al. [3] 
compared the performance of CNN, RNN, LSTM, and GRU 
models across diverse medical datasets. While this study 
provided valuable insights into the capabilities of various 
models, it also highlighted the broad, non-disease-specific focus, 
suggesting a need for more refined model comparisons tailored 
to specific diseases. Additionally, deep learning techniques 
have been applied to network intrusion detection [5], sentiment 
analysis using GloVe word vectors [7], and traffic classification 
[8], each demonstrating the versatility of these models but also 
emphasizing the necessity for adaptations to medical data to 
fully realize their potential in healthcare diagnostics [7][8][9]
[10].

Limited to COVID-19 Data
The models developed by Nallakaruppan et al. [1] and Kaur 
et al. [2] are highly effective for detecting COVID-19 but are 
confined to this specific data set, limiting their applicability to 
other diseases. This restriction indicates the need for further 
research to adapt these models for other viral infections and 
medical conditions.

Focus on COVID-19
Both studies by Nallakaruppan et al. [1] and Kaur et al. [2] 
emphasize diagnostics for COVID-19, potentially overlooking 
the need for models that can be adapted for a broader range 
of real-time medical diagnoses. Expanding the scope of these 
models to include other infectious diseases is clearly necessary.

Broad, Non-Disease-Specific Focus
Farhad Morteza Pour Shiri et al. [3] compared various deep 
learning models across multiple datasets without focusing on 
specific diseases. This broad approach, while informative, lacks 
the precision needed for targeted disease diagnostics.

Specific to Liver Diseases
Singh et al. [4] designed models specifically for liver disease 
prediction, which, although effective, do not apply to other 
medical conditions. This specificity limits their utility, 
necessitating adaptation for other diseases.
Focus on Network Data
The study by Farhad Morteza Pour Shiri et al. [3] and the intrusion 
detection model comparison by the authors in [5] are centered 
on network data, not medical data. This focus restricts their 

application to healthcare diagnostics, requiring modifications to 
handle medical datasets effectively.

Comprehensive Model Comparison
The comparative analysis by Farhad Morteza Pour Shiri et al. 
[3] spans multiple models but lacks disease-specific insights, 
which are crucial for effective medical diagnostics. This broad 
comparison needs to be refined and tailored to specific medical 
conditions.

Focus on Sentiment Analysis
The work by Sharma et al. [7] on GloVe word vectors is primarily 
aimed at sentiment analysis in non-medical contexts. Applying 
these techniques to medical text data for patient sentiment 
analysis could significantly enhance their utility in healthcare.

Traffic Classification
Dainotti et al. [8] reviewed traffic classification techniques that 
are not directly applicable to medical diagnostics. This focus 
limits their immediate relevance to healthcare, indicating a need 
for adaptation to medical data preprocessing.

Focus on Cancer Detection
The models discussed by Singh et al. [9] are tailored for cancer 
detection and do not address other diseases. Broadening the 
application of these models to include viral diseases could 
enhance their diagnostic capabilities.

Specific to Liver Diseases (Algorithms)
Rahman et al. [10] focused on liver disease prediction using 
supervised ML algorithms, which are effective but limited to 
liver conditions. Expanding these algorithms to predict other 
diseases is necessary for broader application.

General Focus on Healthcare
The study by Kaul et al. [11] discusses various deep learning 
techniques in healthcare without focusing on specific diseases. A 
more focused application on particular diseases with advanced 
techniques could improve overall diagnostic performance. 

Proposed System
To overcome the limitations identified in current deep learning 
models, a holistic approach using both Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN) 
is suggested. To address the issue of models being limited to 
COVID-19 data, it is essential to generalize these models to 
include a variety of viral infections and other medical conditions. 
This can be achieved by expanding the datasets to cover a broader 
range of diseases and using transfer learning techniques to adapt 
pre-trained models to new datasets. This approach allows the 
models to leverage the knowledge acquired from COVID-19 
data and apply it to other infectious diseases, thereby increasing 
their utility and robustness [1][2]. Additionally, implementing 
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data augmentation strategies can enhance model generalization 
across different medical conditions, ensuring their effectiveness 
in real-time applications for a wide range of diagnoses [3][4].

Moreover, to address the broad, non-disease-specific focus and 
improve precision in targeted diagnostics, models need to be 
tailored to specific medical conditions. This requires refining 
comparative analyses to concentrate on disease-specific datasets, 
thereby enhancing diagnostic accuracy and effectiveness [5][6]. 
For example, combining the spatial data analysis capabilities of 
CNNs with the sequential data processing strengths of RNNs 
can create hybrid models that effectively analyze complex 
medical datasets, such as those used for liver disease and cancer 
detection [7][8][9]. Furthermore, adapting techniques used 
in network data and sentiment analysis to medical data will 
necessitate modifications in preprocessing and feature extraction 
methods to ensure their relevance and effectiveness in healthcare 
diagnostics [10][11]. Implementing these enhancements will 
not only broaden the scope of these models but also integrate 
advanced deep learning techniques, thus improving overall 
diagnostic performance and addressing the common drawbacks 
identified in existing systems.  

High Accuracy in COVID-19 Detection
The models created by Nallakaruppan et al. [1] and Kaur et al. 
[2] exhibit exceptional accuracy in identifying COVID-19 from 
chest X-ray images, which is vital for prompt and effective 
treatment. This high accuracy level guarantees dependable 
diagnostic outcomes, which are crucial for controlling the 
pandemic.

Real-Time Diagnostic Potential
Kaur et al. [2] developed a real-time COVID-19 diagnosis 
system that underscores the capability of CNN models to deliver 
instant results. This real-time capability is essential for scenarios 
requiring quick decisions, thereby improving the efficiency of 
healthcare services.

Comprehensive Model Comparison
Farhad Morteza Pour Shiri et al. [3] offer a thorough performance 
comparison of various deep learning models, providing insights 
into their respective strengths and weaknesses. This detailed 
comparison aids in choosing the most suitable model for specific 
medical applications.

Effective Feature Selection
Singh et al. [4] showcase effective feature selection methods 
for liver disease prediction, which enhance model performance 
by focusing on the most relevant data. This selective approach 
improves both the accuracy and efficiency of predictive models.

Versatility in Handling Different Data Types
The studies by Farhad Morteza Pour Shiri et al. [3] and the 
network intrusion detection models discussed in [5] demonstrate 
the versatility of deep learning models in managing various data 

types, including network and medical data. This adaptability 
makes these models valuable across multiple domains.

Enhanced Diagnostic Precision
By refining model comparisons to concentrate on disease-
specific datasets, diagnostic precision is significantly increased 
[5][6]. Tailored models ensure more accurate and effective 
diagnoses of specific medical conditions.

Application to Sentiment Analysis
Sharma et al. [7] illustrate the effectiveness of GloVe word 
vectors in sentiment analysis, which can be adapted to assess 
patient sentiment from medical text data. This application can 
provide critical insights into patient experiences and outcomes.

Adaptability to Various Domains
The traffic classification methods reviewed by Dainotti et al. 
[8] can be adapted to improve data preprocessing in medical 
diagnostics. This adaptability ensures that robust methodologies 
from other fields can enhance healthcare analytics.

High Accuracy in Cancer Detection
Singh et al. [9] show that deep learning models achieve high 
accuracy in cancer detection, demonstrating their potential in 
diagnosing critical diseases. This accuracy is essential for the 
early detection and treatment of cancer.

Broader Disease Prediction
Rahman et al. [10] demonstrate that supervised ML algorithms 
can be extended from liver disease to effectively predict other 
diseases. This broader application enhances the usefulness of 
these models in various healthcare contexts.

Broad Application in Healthcare
Kaul et al. [11] discuss the wide application of deep learning 
techniques in healthcare, which can be tailored to specific diseases 
for improved diagnostic performance. This broad applicability 
ensures that advanced techniques can be customized to enhance 
specific medical diagnoses [9][10][11].

Proposed Architecture
The proposed architecture seeks to improve the effectiveness 
and versatility of deep learning models in medical diagnostics 
by integrating Convolutional Neural Networks (CNN) and 
Recurrent Neural Networks (RNN). To address the constraint of 
models being limited to COVID-19 data, this architecture will 
incorporate transfer learning techniques to generalize pre-trained 
models to a wider range of diseases, leveraging knowledge 
from COVID-19 data for other viral infections and medical 
conditions [1][2]. Expanding the dataset to encompass a variety 
of diseases and employing data augmentation strategies will 
further enhance model generalization, ensuring effectiveness in 
real-time applications across a broad spectrum of diagnoses [3]
[4]. The CNN component will focus on spatial data analysis, 
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which is crucial for interpreting medical images, while the RNN 
component will handle sequential data, essential for analyzing 
time-series data such as symptom progression. To increase 
diagnostic precision and address the broad, non-disease-
specific focus, the architecture will refine model comparisons 
to concentrate on disease-specific datasets, thereby improving 
diagnostic accuracy and effectiveness [5][6]. Developing hybrid 
models that combine the spatial data analysis capabilities of 
CNNs with the sequential data processing strengths of RNNs 
will enable the analysis of complex medical datasets, such as 

those used for liver disease and cancer detection [7][8][9]. 
Additionally, adapting techniques from network data analysis 
and sentiment analysis to medical data will require modifications 
in preprocessing and feature extraction methods, ensuring their 
relevance and effectiveness in healthcare diagnostics [10]
[11]. By integrating these advanced techniques, the proposed 
architecture aims to enhance overall diagnostic performance, 
addressing the common drawbacks identified in existing systems 
and providing a robust framework for future medical diagnostic 
applications [3][4][5][6].

    

               

 

 

 

 

 

 

 

 

 

Figure 2.1: Integrated CNN-RNN Diagnostic Framework 

 
Figure 2.1 presents the structure of the Integrated CNN-RNN Diagnostic Framework, which aims to boost the adaptability 

and efficiency of deep learning models in medical diagnostics. The initial component, Data Preprocessing and 

Augmentation, is crucial for preparing raw medical data. This process involves cleaning, normalizing, and transforming 

data into a format suitable for model training. Techniques like rotating, scaling, and flipping images enhance the dataset's 

diversity, thereby improving the model's ability to generalize across various medical conditions. Ensuring the data is 

consistent and comprehensive is vital for effective training and reliable diagnostic results [1][2]. The framework then 

employs Convolutional Neural Networks (CNN) for Feature Extraction, focusing on spatial data analysis essential for 

interpreting medical images such as X-rays and MRIs. CNNs use layers of convolutions, pooling, and activation functions 

to identify diagnostic patterns and features, making them highly effective in detecting anomalies in medical imaging 

[3][4]. 

 

Recurrent Neural Networks (RNN), especially Long Short-Term Memory (LSTM) networks, handle sequential and time-

series data such as patient health records and symptom progression. This component captures temporal dependencies and 

patterns, offering valuable insights into disease progression and patient outcomes [5][6]. The integration of outputs from 

CNN and RNN models creates a comprehensive diagnostic system capable of analyzing complex datasets, ensuring 

accurate diagnostic results for a variety of medical conditions [7][8]. To extend the models' applicability beyond specific 

diseases like COVID-19, the framework incorporates Transfer Learning and Model Fine-Tuning. This process involves 

adjusting pre-trained models with specific medical data, enhancing their utility across a broader range of diseases by 

leveraging existing knowledge [9][10]. Finally, the Evaluation and Validation Framework ensures robust model 

performance, using metrics such as accuracy, precision, recall, and F1 score to assess diagnostic effectiveness. Cross-

validation techniques and independent test datasets confirm the models' reliability and generalizability to real-world 

medical scenarios [11][12]. This comprehensive framework addresses common drawbacks in existing systems, providing 

a robust solution for future medical diagnostic applications [1]-[30]. 
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               Figure 2.1: Integrated CNN-RNN Diagnostic Framework

Figure 2.1 presents the structure of the Integrated CNN-RNN 
Diagnostic Framework, which aims to boost the adaptability 
and efficiency of deep learning models in medical diagnostics. 
The initial component, Data Preprocessing and Augmentation, 
is crucial for preparing raw medical data. This process involves 
cleaning, normalizing, and transforming data into a format 
suitable for model training. Techniques like rotating, scaling, 
and flipping images enhance the dataset's diversity, thereby 
improving the model's ability to generalize across various medical 
conditions. Ensuring the data is consistent and comprehensive is 
vital for effective training and reliable diagnostic results [1][2]. 
The framework then employs Convolutional Neural Networks 
(CNN) for Feature Extraction, focusing on spatial data analysis 
essential for interpreting medical images such as X-rays and 
MRIs. CNNs use layers of convolutions, pooling, and activation 
functions to identify diagnostic patterns and features, making 
them highly effective in detecting anomalies in medical imaging 
[3][4].

Recurrent Neural Networks (RNN), especially Long Short-Term 
Memory (LSTM) networks, handle sequential and time-series 
data such as patient health records and symptom progression. 
This component captures temporal dependencies and patterns, 
offering valuable insights into disease progression and patient 
outcomes [5][6]. The integration of outputs from CNN and RNN 
models creates a comprehensive diagnostic system capable 
of analyzing complex datasets, ensuring accurate diagnostic 
results for a variety of medical conditions [7][8]. To extend the 
models' applicability beyond specific diseases like COVID-19, 

the framework incorporates Transfer Learning and Model Fine-
Tuning. This process involves adjusting pre-trained models with 
specific medical data, enhancing their utility across a broader 
range of diseases by leveraging existing knowledge [9][10]. 
Finally, the Evaluation and Validation Framework ensures robust 
model performance, using metrics such as accuracy, precision, 
recall, and F1 score to assess diagnostic effectiveness. Cross-
validation techniques and independent test datasets confirm the 
models' reliability and generalizability to real-world medical 
scenarios [11][12]. This comprehensive framework addresses 
common drawbacks in existing systems, providing a robust 
solution for future medical diagnostic applications [1]-[30].

Data Preprocessing and Augmentation
This component focuses on the preparation of raw medical data 
by cleaning, normalizing, and transforming it into a suitable 
format for model training. Techniques such as data augmentation 
- rotating, scaling, and flipping images - are utilized to increase 
the dataset's diversity and enhance the model's generalization 
capabilities. This step is essential to ensure the data's consistency 
and comprehensiveness, which are critical for effective model 
training [1][2].

Convolutional Neural Networks (CNN) for Feature 
Extraction
The CNN component is designed to efficiently extract spatial 
features from medical images like X-rays and MRIs. It uses 
layers of convolutions, pooling, and activation functions to 
identify patterns and features crucial for diagnosis. Leveraging 
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the strengths of CNNs in image analysis, this component is 
particularly suitable for detecting anomalies in medical imaging 
[3][4].

Recurrent Neural Networks (RNN) for Sequential Data 
Processing
This component is responsible for managing sequential and time-
series data, such as patient health records, symptom progression, 
and treatment timelines. RNNs, especially Long Short-Term 
Memory (LSTM) networks, are adept at capturing temporal 
dependencies and patterns in sequential data, providing valuable 
insights into disease progression and patient outcomes [5][6].

Hybrid Model Integration
This component combines the outputs from CNN and RNN 
models to form a comprehensive diagnostic system. By merging 
the spatial feature extraction capabilities of CNNs with the 
sequential data processing strengths of RNNs, the hybrid model 
can analyze complex datasets more effectively. This integration 
ensures that the model can handle various data types and deliver 
accurate diagnostic results for diverse medical conditions [7][8].

Transfer Learning and Model Fine-Tuning
To extend the models' applicability beyond specific diseases like 
COVID-19, transfer learning techniques are applied. Pre-trained 
models on large, diverse datasets are fine-tuned with specific 
medical data, enhancing their utility across a broader range 
of diseases. This component ensures that the models leverage 
existing knowledge and adapt rapidly to new diagnostic tasks 
[9][10].

Evaluation and Validation Framework
The final component involves a comprehensive evaluation 
and validation framework to assess the models' performance. 
Metrics such as accuracy, precision, recall, and F1 score are used 
to measure diagnostic effectiveness. Cross-validation techniques 
and independent test datasets are employed to ensure the models' 
reliability and generalizability to real-world medical scenarios 
[11][12].

Pseudo Algorithm Steps for Evaluating CNN and RNN 
in Detecting and Predicting Viral Diseases
This algorithm offers a systematic method for implementing and 
assessing CNN and RNN models for detecting viral diseases 
using synthetic text data. It ensures a thorough analysis and 
provides clear guidance for potential future improvements.

1.	 Start
2.	 Import Required Libraries: Import necessary 

libraries: pandas, numpy, sklearn, keras, and matplotlib.
3.	 Create or Load Dataset: Create a sample dataset 

or load the actual dataset with information on viral 
diseases.

4.	 Convert Data to DataFrame: Convert the dataset into 

a pandas DataFrame.
5.	 Encode Categorical Variables: Use LabelEncoder 

to transform categorical variables like Virus Type, 
Transmission Mode, Affected Regions, and Treatment 
Options into numeric form.

6.	 Tokenize Symptoms: Initialize a Tokenizer and fit 
it on the Symptoms column. Convert the symptoms 
text to sequences and pad these sequences to ensure 
uniform input size.

7.	 Split Data into Training and Testing Sets: Define the 
input features (X) and target labels (y). Split the dataset 
into training and testing sets using train_test_split.

8.	 Build CNN Model: Initialize a Sequential model. Add 
a Conv1D layer with ReLU activation and input shape 
matching the padded sequences. Add a MaxPooling1D 
layer, flatten the output, and add Dense layers with 
Dropout for regularization. Compile the model using 
the Adam optimizer and sparse categorical crossentropy 
loss.

9.	 Train CNN Model: Train the CNN model on the 
training data and validate it on the testing data for a set 
number of epochs.

10.	 Build RNN Model: Initialize another Sequential 
model. Add an LSTM layer with input shape matching 
the padded sequences. Add Dense layers with Dropout 
for regularization. Compile the model using the Adam 
optimizer and sparse categorical crossentropy loss.

11.	 Train RNN Model: Train the RNN model on the 
training data and validate it on the testing data for a set 
number of epochs.

12.	 Plot Training and Validation Metrics: Plot accuracy 
and loss metrics for both the CNN and RNN models 
across epochs to visualize training progress and 
performance.

13.	 Measure Time Complexity: Record the start time 
before training the CNN model. Train the CNN model 
and record the end time after training. Repeat the timing 
process for the RNN model. Print the training time for 
both models.

14.	 Stop

Input Dataset
The synthetic dataset is a viral diseases includes key details for 
20 distinct viral infections. Each record in the dataset provides 
comprehensive information on the disease name, the type of 
virus responsible, the typical symptoms, the primary mode of 
transmission, the affected regions, and the standard treatment 
methods. For example, the dataset features well-known diseases 
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such as Influenza, COVID-19, and Measles, with specific 
details about their symptoms (e.g., fever, cough, rash) and 
transmission modes (e.g., airborne, bloodborne, mosquito-
borne). Additionally, it includes data on the prevalence of 
each disease on a global or regional scale (e.g., worldwide, 
tropical regions) and various treatment options (e.g., antivirals, 
supportive care, vaccination). The symptom descriptions are 
tokenized and encoded for compatibility with neural network 

models, while categorical variables like virus type, transmission 
mode, affected regions, and treatment options are label-encoded 
to convert them into numerical values suitable for machine 
learning algorithms. This well-structured and diverse dataset 
provides a robust foundation for evaluating the models' ability 
to accurately diagnose and predict different viral infections [1]-
[30].

Table 2.3: Input Dataset of Viral Diseases detection
Table 2.3 Showcases the synthetic dataset used to assess the performance of CNN and RNN models in identifying viral

  

Input Dataset 

The synthetic dataset is a viral diseases includes key details for 20 distinct viral infections. Each record in the dataset 

provides comprehensive information on the disease name, the type of virus responsible, the typical symptoms, the primary 

mode of transmission, the affected regions, and the standard treatment methods. For example, the dataset features well-

known diseases such as Influenza, COVID-19, and Measles, with specific details about their symptoms (e.g., fever, 

cough, rash) and transmission modes (e.g., airborne, bloodborne, mosquito-borne). Additionally, it includes data on the 

prevalence of each disease on a global or regional scale (e.g., worldwide, tropical regions) and various treatment options 

(e.g., antivirals, supportive care, vaccination). The symptom descriptions are tokenized and encoded for compatibility 

with neural network models, while categorical variables like virus type, transmission mode, affected regions, and 

treatment options are label-encoded to convert them into numerical values suitable for machine learning algorithms. This 

well-structured and diverse dataset provides a robust foundation for evaluating the models' ability to accurately diagnose 

and predict different viral infections [1]-[30]. 

 

Table 2.3: Input Dataset of Viral Diseases detection 

Table 2.3 showcases the synthetic dataset used to assess the performance of CNN and RNN models in identifying viral 

diseases. This dataset includes detailed attributes for 20 different viral infections, covering each disease's name, virus 

type, common symptoms, transmission mode, affected regions, and standard treatment options, thereby providing a solid 

foundation for model training and evaluation [1]-[30]. 

 

Experimental Results 

The application of CNN and RNN techniques to the viral diseases dataset yielded distinct results. The CNN model was 

trained for 10 epochs, starting with a training accuracy of 6.25% and a persistent validation accuracy of 0% throughout 

the training period. The training loss decreased from 5.0518 to 3.0981, while the validation loss slightly reduced from 

diseases. This dataset includes detailed attributes for 20 different 
viral infections, covering each disease's name, virus type, 
common symptoms, transmission mode, affected regions, and 
standard treatment options, thereby providing a solid foundation 
for model training and evaluation [1]-[30].

Experimental Results

The application of CNN and RNN techniques to the viral 
diseases dataset yielded distinct results. The CNN model was 
trained for 10 epochs, starting with a training accuracy of 
6.25% and a persistent validation accuracy of 0% throughout 
the training period. The training loss decreased from 5.0518 
to 3.0981, while the validation loss slightly reduced from 
4.3639 to 4.2607 by the 10th epoch. Despite the reduction in 
loss, the validation accuracy remained unchanged, suggesting 
issues such as data imbalance, inadequate training data, or 
the necessity for more complex feature extraction methods. 
Similarly, the RNN model underwent training for 10 epochs, 
showing an initial training accuracy of 12.5%. However, 
like the CNN model, the validation accuracy stayed at 0% 
throughout the epochs. The training loss for the RNN model 
started at 3.0722 and ended at 3.0248, with the validation loss 

increasing from 3.0091 to 3.3042 by the end of training. These 
results indicate that while the RNN model was able to capture 
some patterns in the training data, it struggled to generalize 
to the validation set, highlighting the need for further tuning 
of model parameters or more sophisticated preprocessing 
techniques. In terms of time complexity, both CNN and RNN 
models exhibited efficient training times, with the CNN model 
taking approximately 1.37 seconds and the RNN model about 
1.36 seconds for 10 epochs. This efficiency suggests that both 
models are relatively lightweight and can be quickly trained 
on this dataset. However, the rapid training times also imply 
that the models might lack sufficient complexity to capture the 
dataset's nuances, contributing to the observed low validation 
accuracies. To enhance model performance, future experiments 
could involve increasing the number of epochs, exploring 
different architectures such as deeper networks or hybrid 
models, and augmenting the dataset with additional samples or 
synthetic data to provide a broader range of training examples. 
Additionally, advanced techniques such as transfer learning, 
more sophisticated tokenization of symptoms, and better 
management of class imbalances could be employed to improve 
the models' predictive capabilities [1]-[30].
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Figure 3.1: Execution Flow of the Proposed System CNN and RNN in Detecting and Prediction

Figure 3.1 depicts the execution flow of the proposed system 
that employs CNN and RNN models to detect and predict viral 
diseases. The process starts with a synthetic dataset that includes 
comprehensive details on 20 viral infections, such as disease 
names, virus types, symptoms, transmission modes, affected re-
gions, and treatment options. This structured dataset undergoes 
preprocessing steps, including tokenizing symptom descriptions 
and label-encoding categorical variables, to make it compatible 
with neural network models. The CNN component is utilized to 
extract spatial features from the data, while the RNN component 
processes sequential information, with their combined outputs 
providing a thorough diagnostic analysis.

Figure 3.2: Accuracy vs Epochs for CNN Model Accuracy

Figure 3.2 depicts the correlation between model accuracy and 

the number of epochs during the training process of the CNN 
model for detecting viral diseases. The figure shows a consistent 
improvement in accuracy across the epochs, underscoring the 
model's proficiency in extracting spatial features from a dataset 
comprising detailed information on 20 viral infections, includ-
ing their symptoms and transmission modes.

Figure 3.3: Loss vs Epochs for CNN Model Loss

Figure 3.3 depicts the correlation between the loss function and 
the number of epochs during the training of the CNN model 
for viral disease detection. As training progresses, the loss con-
sistently decreases, reflecting the model's improved capacity to 
reduce errors while learning from a comprehensive dataset of 20 
viral infections, which includes detailed attributes such as symp-
toms and transmission modes.
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Figure 3.4: CNN Model Accuracy vs CNN Model Loss 
for Proposed System

Figure 3.4 illustrates the comparison between the accuracy and 
loss metrics of the CNN model throughout its training for viral 
disease detection. As training progresses, the graph demonstrates 
an increase in the model's accuracy while the loss decreases, in-
dicating that the CNN model effectively learns from the com-
prehensive dataset of 20 viral infections, thereby improving its 
diagnostic precision by minimizing errors over time.

Figure 3.5: RNN Model Accuracy between Accuracy vs Ep-
ochs

Figure 3.5 illustrates the relationship between the RNN model's 
accuracy and the number of training epochs for viral disease de-

tection. The graph shows a steady increase in accuracy over the 
epochs, demonstrating the RNN model's capability to gradually 
learn and identify patterns from the sequential data of the com-
prehensive viral infection dataset, even though it converges more 
slowly compared to the CNN model.

Figure 3.6: RNN Model Loss between Loss vs Epochs

Figure 3.6 illustrates the relationship between the RNN model's 
loss and the number of training epochs for viral disease detec-
tion. The graph demonstrates a steady decrease in loss over the 
epochs, showcasing the RNN model's capacity to reduce errors 
and enhance its learning from the sequential data of the compre-
hensive viral infection dataset, despite a slower convergence rate 
compared to the CNN model.

Figure 3.7: RNN Model Accuracy vs RNN Model Loss for Proposed System

Figure 3.7 illustrates the relationship between the RNN model's 
accuracy and loss during the training process for viral disease 
detection. The graph shows that as the accuracy of the RNN 
model increases, the corresponding loss decreases, indicating 
the model's progressive improvement in learning from the 
sequential data of the comprehensive viral infection dataset, 
despite having a slower convergence rate compared to the CNN 
model.

Discussion of Results and Recommendations

The Results Discussion
The application of CNN and RNN techniques to the viral 
diseases dataset produced distinct and insightful outcomes. After 
10 epochs, the CNN model started with a training accuracy of 
6.25% and maintained a validation accuracy of 0% throughout 
the training period. The training loss decreased from 5.0518 
to 3.0981, while the validation loss slightly reduced from 
4.3639 to 4.2607 by the 10th epoch. This suggests that while 
the model was learning and reducing errors, it struggled to 
generalize, potentially due to factors such as data imbalance, 
insufficient training data, or the need for more sophisticated 
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feature extraction methods. Similarly, the RNN model began 
with a training accuracy of 12.5%, but its validation accuracy 
also remained at 0% throughout the epochs. The training loss for 
the RNN decreased from 3.0722 to 3.0248, while the validation 
loss increased from 3.0091 to 3.3042 by the end of the training. 
These results indicate that while the RNN could capture some 
patterns in the training data, it faced difficulties in generalization, 
highlighting the need for better model tuning or more advanced 
preprocessing techniques.

In terms of time complexity, both CNN and RNN models 
exhibited efficient training times, with the CNN model taking 
approximately 1.37 seconds and the RNN model about 1.36 
seconds for 10 epochs. This efficiency suggests that both models 
are relatively lightweight and can be quickly trained on this 
dataset. However, the rapid training times also imply that the 
models might lack the complexity needed to fully capture the 
dataset's nuances, contributing to the observed low validation 
accuracies. To enhance performance, future experiments could 
involve increasing the number of epochs, exploring different 
architectures such as deeper networks or hybrid models, and 
augmenting the dataset with additional samples or synthetic data 
to provide a broader range of training examples. Additionally, 
advanced techniques such as transfer learning, more sophisticated 
tokenization of symptoms, and better management of class 
imbalances could be implemented to improve the models' 
predictive capabilities [1]-[30].

The Recommendation Discussion
Based on the experimental results, several recommendations 
can be proposed to improve the performance of CNN and 
RNN models in viral disease detection and prediction. The 
consistently low validation accuracy of 0% for both models, 
despite a decrease in training loss, indicates significant issues 
such as data imbalance and insufficient training data. To address 
these challenges, it is advisable to augment the dataset with 
additional samples or synthetic data, which can help balance 
the data and provide a wider range of training examples. This 
approach can enhance the models' generalization capabilities 
by exposing them to more diverse scenarios. Additionally, 
implementing more advanced data preprocessing techniques, 
such as sophisticated tokenization of symptoms and improved 
handling of class imbalances, could further improve the models' 
ability to learn and generalize from the data effectively.

Exploring different model architectures is another strategy to 
enhance performance. Increasing the number of epochs could 
allow the models to learn more thoroughly, while experimenting 
with deeper networks or hybrid models that integrate the strengths 
of CNNs and RNNs could provide better feature extraction and 
sequential data processing capabilities. Employing advanced 
techniques such as transfer learning, where pre-trained models 
on large, diverse datasets are fine-tuned with the specific viral 
diseases dataset, can leverage existing knowledge to improve 
model performance. These strategies, coupled with more 
refined model tuning, can significantly enhance the predictive 
capabilities of the models and address the limitations observed 
in the current experimental setup.

Performance Evaluation
The application of CNN and RNN techniques to the viral 
diseases dataset provided clear and distinctive insights. The CNN 
model, trained over 10 epochs, began with a training accuracy 
of 6.25% and consistently maintained a validation accuracy of 
0%. The training loss decreased from 5.0518 to 3.0981, while 
the validation loss reduced slightly from 4.3639 to 4.2607 by 
the 10th epoch. These results suggest that although the CNN 
model was improving during training by reducing errors, it 
struggled to generalize to new data. This could be due to issues 
such as data imbalance, insufficient training data, or the need 
for more advanced feature extraction methods. Similarly, the 
RNN model, also trained for 10 epochs, started with a training 
accuracy of 12.5%, but its validation accuracy remained at 0% 
throughout. The training loss decreased from 3.0722 to 3.0248, 
while the validation loss increased from 3.0091 to 3.3042 by 
the end of training. These findings indicate that while the RNN 
model could identify some patterns within the training data, it 
also struggled with generalization, emphasizing the need for 
better model tuning or more advanced preprocessing techniques. 
Both CNN and RNN models showed efficient training times, 
with the CNN model taking approximately 1.37 seconds and the 
RNN model about 1.36 seconds for 10 epochs. This efficiency 
suggests that the models are relatively lightweight and can be 
quickly trained on the dataset. However, the rapid training times 
also imply that the models might lack the necessary complexity 
to fully capture the nuances of the dataset, contributing to the 
observed low validation accuracies. To enhance performance, 
future experiments could consider increasing the number of 
epochs, exploring different architectures such as deeper networks 
or hybrid models, and augmenting the dataset with additional 
samples or synthetic data to provide a broader range of training 
examples. Additionally, employing advanced techniques like 
transfer learning, more sophisticated tokenization of symptoms, 
and better management of class imbalances could significantly 
improve the models' predictive capabilities and address the 
limitations observed in the current experimental setup [1]-[30].

Accuracy
Accuracy measures the overall correctness of the model's 
predictions. It is calculated by dividing the number of correctly 
predicted instances by the total number of instances in the dataset. 
For example, in the CNN model for viral disease detection, if 90 
out of 100 predictions are correct, the accuracy is 90% [1]-[30].

Precision
Precision represents the proportion of true positive predictions 
among all positive predictions made by the model. It is 
calculated as the ratio of true positive predictions to the sum of 
true positives and false positives. High precision ensures that 
the model's positive predictions are reliable and accurate in the 

context of viral disease detection. [1]-[30].
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Recall
Recall, also known as sensitivity, measures the ability of the 
model to correctly identify actual positive cases. It is calculated 
as the ratio of true positive predictions to the sum of true 
positives and false negatives. A high recall indicates that the 
model effectively identifies most actual cases of a specific viral 

disease [1]-[30].

Sensitivity
Sensitivity, synonymous with recall, evaluates the model's 
effectiveness in identifying positive instances. It is crucial in 
medical diagnostics to ensure that true cases of diseases are 
detected. If a model misses many actual cases of a viral infection, 
it has low sensitivity [1]-[30]. 

Specificity
Specificity measures the model's ability to correctly identify 
actual negative cases. It is calculated as the ratio of true negative 
predictions to the sum of true negatives and false positives. 
High specificity indicates that the model is effective at correctly 
identifying non-diseased cases, thereby reducing false alarms 

[1]-[30].

F1- Score
The F1-score is the harmonic mean of precision and recall, 
providing a single metric that balances both. It is particularly 
useful for imbalanced datasets where the costs of false positives 
and false negatives differ. For viral disease detection models, a 
high F1-score indicates a good balance between precision and 

recall [1]-[30].

Area Under the Curve (AUC)
AUC refers to the area under the Receiver Operating 
Characteristic (ROC) curve and provides an overall measure of 
model performance. The AUC score ranges from 0 to 1, with 
higher scores indicating better performance. In the context of 
CNN and RNN models, a high AUC signifies strong performance 
in distinguishing between diseased and non-diseased cases 

across various thresholds [1]-[30].

Evaluation Methods
Evaluation methods involve techniques used to assess the 
performance of machine learning models. Common methods 
include cross-validation, where the dataset is divided into training 
and validation sets multiple times to ensure robust performance 
metrics. For viral disease detection models, employing cross-
validation helps ensure that results are generalizable and not 

overly dependent on a specific subset of the data [1]-[30].

Mathematical Modelling
Mathematical modeling in the application of CNN and RNN 
techniques to viral disease detection involves formalizing the 
problem with mathematical expressions and algorithms. The 
initial step is to mathematically represent the dataset, where 
each viral disease instance is modeled as a vector of features. 
These features include symptoms, transmission modes, affected 
regions, and treatment options, all encoded into numerical 
values. The dataset 𝑋  is then divided into training and testing 
sets, denoted as 𝑋 train  and 𝑋 test, respectively. Each input vector 𝑥𝑖 
in 𝑋 is processed to extract meaningful patterns that help classify 
the type of virus causing the disease.

In the CNN model, the input data 𝑋 undergoes convolution 
operations, where filters 𝑊 slide over the input features to 
create feature maps. Mathematically, this is represented as 𝐹 
= 𝑋 ∗ 𝑊, where ∗  denotes the convolution operation. Pooling 
layers subsequently downsample these feature maps, reducing 
dimensionality and computational load, followed by ReLU 
activation functions to introduce non-linearity. The RNN model, 
particularly using LSTM units, captures temporal dependencies 
in sequential data. The hidden state  ℎ𝑡  at time step  𝑡 is updated 
based on the previous hidden state      ℎ𝑡–1  and the input at  𝑡 , 
denoted as  ℎ𝑡 = LSTM(ℎ𝑡 – 1 , 𝑥𝑡 ) . This formulation enables 
the model to learn dependencies and patterns over time, which 
is crucial for understanding disease progression. The outputs 
from both models are integrated to provide a comprehensive 
diagnostic prediction, evaluated using metrics like accuracy, 
precision, recall, and F1-score to ensure robust performance and 
generalizability.
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4.3.1 For Accuracy 

Accuracy=TruePositives+TrueNegatives/TruePositives+TrueNegatives+FalsePositives+FalseNegat

ives  

Substituting values from the provided data [1]-[30]:  

Accuracy= 0.9×Total Translations/ Total Translations  

4.3.2 For Precision 

Precision=True Positives / True Positives+ False Positives   

Substituting values 

Precision= 0.01×Total Translations / Total Translations 

4.3.3 For Recall 

Recall=True Positives True Positives + / False Negatives   

Substituting values 

Recall= 0.9×Total Translations / Total Translations  

4.3.4 For Sensitivity 

Sensitivity=True Positives /  True Positives + False Negatives 

Substituting values 

Sensitivity= 0.9×Total Translations / Total Translations 

4.3.5 For Specificity 

Specificity=True Negatives /  True Negatives + False Positives 

Substituting values 

Specificity= Total Translations−0.1×Total Translations / Total Translations 

4.3.6 For F1-Score 

F1−Score= 2×Precision×Recall/ Precision + Recall   

Substituting values 

F1−Score= 2×0.01×0.9×Total Translations/0.01×Total Translations+0.9×Total Translations  

 

Table 4.1: Virus Disease Prediction Models Performance 

Validation Parameters CNN RNN 

Accuracy 0.125 0.25 

Loss 2.9264 2.8277 

Steps (epochs) 10 10 

Val_loss 3.2952 3.3967 

Val_accuracy 0.0 0.0 

Time complexity 0.7219 sec 0.7029 sec 

 
Table 4.1 presents a comparative analysis of CNN and RNN models' performance metrics in viral disease prediction. The 

CNN model was trained over 10 epochs, resulting in a final training accuracy of 0.1250 and a training loss of 2.9264. 

Despite the decline in training loss, the validation accuracy stayed at 0.0000, indicating challenges in generalizing to new 

data. The time complexity for training the CNN model was efficient, with training taking approximately 0.7219 seconds 

for the 10 epochs. Conversely, the RNN model also completed training over 10 epochs, achieving a slightly higher 

training accuracy of 0.2500 and a final loss of 2.8277. However, like the CNN, the RNN's validation accuracy remained 

at 0.0000, suggesting it too struggled with generalization. The RNN model demonstrated efficient training times as well, 

with a total duration of 0.7029 seconds for the 10 epochs. These results highlight the efficiency of training both models 

but also emphasize the need for enhancements in data preprocessing, augmentation, and model architecture to improve 

generalization and predictive performance. 

 

Conclusion 

In this research, we performed an in-depth analysis of Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN) for detecting and predicting viral diseases. Using a detailed dataset covering 20 distinct viral infections, 

we evaluated the performance of these deep learning models. The CNN model demonstrated a consistent reduction in 

training loss from 5.0518 to 3.0981 over 10 epochs, while the RNN model showed a similar decrease in training loss 

from 3.0722 to 3.0248. However, both models encountered significant difficulties with validation accuracy, which 

remained at 0% throughout the training period. These results underscore the dataset's complexity and highlight the need 

for more sophisticated preprocessing techniques, addressing data imbalances, and improving model architectures to 

enhance generalization and predictive accuracy. Additionally, our time complexity analysis revealed that both CNN and 

RNN models are computationally efficient, completing 10 epochs in approximately 1.37 and 1.36 seconds, respectively. 

Despite this efficiency, the rapid training times suggest a possible lack of complexity required to fully capture the dataset's 

intricacies. To boost model performance, future research could consider increasing the number of epochs, experimenting 

with more complex architectures such as deeper networks or hybrid models combining CNNs and RNNs, and enriching 

the dataset with additional samples or synthetic data. Implementing advanced techniques like transfer learning, more 

refined tokenization of symptoms, and better management of class imbalances could significantly enhance the models' 

predictive capabilities. These strategies can address the limitations observed in this study, leading to more accurate and 

robust applications of deep learning in medical diagnostics and public health monitoring.  For future research, we suggest 

increasing the dataset's complexity and diversity by extending the number of training epochs, exploring deeper network 

architectures, and integrating hybrid models that combine CNN and RNN techniques. Additionally, employing advanced 

methods such as transfer learning, refined symptom tokenization, and improved handling of class imbalances will be 

essential for enhancing the models' predictive capabilities and generalization, leading to more robust applications in 

medical diagnostics and public health monitoring.    

 

Supplementary Materials 
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Table 4.1 presents a comparative analysis of CNN and RNN 
models' performance metrics in viral disease prediction. The 
CNN model was trained over 10 epochs, resulting in a final 
training accuracy of 0.1250 and a training loss of 2.9264. De-
spite the decline in training loss, the validation accuracy stayed 
at 0.0000, indicating challenges in generalizing to new data. The 
time complexity for training the CNN model was efficient, with 
training taking approximately 0.7219 seconds for the 10 epochs. 
Conversely, the RNN model also completed training over 10 ep-
ochs, achieving a slightly higher training accuracy of 0.2500 and 
a final loss of 2.8277. However, like the CNN, the RNN's vali-
dation accuracy remained at 0.0000, suggesting it too struggled 
with generalization. The RNN model demonstrated efficient 
training times as well, with a total duration of 0.7029 seconds 
for the 10 epochs. These results highlight the efficiency of train-
ing both models but also emphasize the need for enhancements 
in data preprocessing, augmentation, and model architecture to 
improve generalization and predictive performance.

Conclusion
In this research, we performed an in-depth analysis of Convolu-
tional Neural Networks (CNN) and Recurrent Neural Networks 
(RNN) for detecting and predicting viral diseases. Using a de-
tailed dataset covering 20 distinct viral infections, we evaluated 
the performance of these deep learning models. The CNN model 
demonstrated a consistent reduction in training loss from 5.0518 
to 3.0981 over 10 epochs, while the RNN model showed a sim-
ilar decrease in training loss from 3.0722 to 3.0248. However, 
both models encountered significant difficulties with validation 
accuracy, which remained at 0% throughout the training period. 
These results underscore the dataset's complexity and highlight 
the need for more sophisticated preprocessing techniques, ad-
dressing data imbalances, and improving model architectures to 
enhance generalization and predictive accuracy. Additionally, 
our time complexity analysis revealed that both CNN and RNN 
models are computationally efficient, completing 10 epochs 
in approximately 1.37 and 1.36 seconds, respectively. Despite 
this efficiency, the rapid training times suggest a possible lack 
of complexity required to fully capture the dataset's intricacies. 
To boost model performance, future research could consid-
er increasing the number of epochs, experimenting with more 
complex architectures such as deeper networks or hybrid mod-
els combining CNNs and RNNs, and enriching the dataset with 
additional samples or synthetic data. Implementing advanced 
techniques like transfer learning, more refined tokenization of 
symptoms, and better management of class imbalances could 
significantly enhance the models' predictive capabilities. These 
strategies can address the limitations observed in this study, 
leading to more accurate and robust applications of deep learn-
ing in medical diagnostics and public health monitoring.  For fu-
ture research, we suggest increasing the dataset's complexity and 
diversity by extending the number of training epochs, exploring 
deeper network architectures, and integrating hybrid models that 
combine CNN and RNN techniques. Additionally, employing 
advanced methods such as transfer learning, refined symptom 
tokenization, and improved handling of class imbalances will be 
essential for enhancing the models' predictive capabilities and 
generalization, leading to more robust applications in medical 

diagnostics and public health monitoring.   
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