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We prove an explicit convergence of suitably normalized integrals on balls where the integrand is the product of 

coefficients of the quasi-regular representation of the finitely generated free group. This result follows from the fact that 

the quasi-regular representation of the free group is c-tempered in the sens of Kazhdan and Yom Din [KYD22, def 2.1]. 

The convergence can be summed up by the formula:
              

where q +1 is twice the rank of the free group, Bn is the ball of radius n with respect to the canonical word metric and 
ψ1, ψ2, ψ3, ψ4 are square summable functions on the boundary of the free group.

1.	 Introduction
Given an irreducible unitary representation of a compact group ρ : G → U (V), we know (see for instance 
[BBP23]) that the Hilbert space V is finite dimensional (say d := dimC(V)) and, for all v1, v2, v3 and v4 in V, 
we have:
    

          
where dg denotes the normalised Haar measure on G.

This formula (Schur’s orthogonality relations) can be seen as a generalisation of the fact that characters of 
finite groups are unitary in l2(G, C) but does not make sense when G is not compact and the coefficients not 
square summable.

In this paper, we compute an equivalent asymptotic formula for the boundary representation of the free group.

In [BG16, First theorem], one can find similar results for Gromov hyperbolic groups when the metric is non arithmetic.
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1.1	Settings and Notations
Let G be the free group with N generators, X the Cayley graph associated to right multiplication in G and x0 a base point 

in X. Then X is an homogeneous tree of degree 2N =: q+1 equipped with the unique distance d which gives the value 1 

to any pair of adjacent vertices (see figure 1 for an example where N = 2 and x0 = e the neutral element of G). We denote 

by [x, y] the unique geodesic joining x to y in X, Sk := S(x0, k) := {x < X||x| := d(x0, x) = k} the sphere centered at x0 with 

radius k < N (for an element g of G, we write also g < Sk whenever gx0 < S(x0, k) as an element of X). We also denote by 

Bn:= B(x0, n) the ball with radius n < N.

A point ω of the boundary Ω can be seen as a direction to infinity or, more precisely, as an infinite geodesics [x0, ω) 

starting at x0. We equip Ω with a topological structure declaring its basis of open sets to be all the shadows Ωx = {ω < 

Ω|[x0, x] Ă [x0, ω)}, where x is in X, which makes Ω a compact topological space (for more details, see the introduction 

of [KS92] where Kuhn embeds X Ω in a cartesian product of compact spaces).

We also equip Ω with a Borel probability measure ν which satisfy:

      

                                                  
The isometric left action of G on X clearly extends to a left action on Ω and one can show that ν is quasi-invariant 
under this action

                                                  

Figure 1: Example for N = 2 and x0 = e

[BOU95, Corollary 2.6.3] where Bourdon shows that G acts by conformal maps on Ω).

In particular, for all g in G, g*ν <<ν. One can show that  (ω) = P (g−1, ω) := qβω(x0,gx0) where β is the Busemann 
function (see also [BOU95]).

Let H be the Hilbert space L2(Ω, ν, C). We define the unitary representation π: G → U (H) by:

                                   
It is well known π is irreducible (see for example [BL17, thm 1.2]). In particular, by Schur’s lemma (1)
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HomG(π, π) = {T < B(H) such that T ◦ π(g) = π(g) ◦ T, ðg < G} = CIdH.

1.1	Organisation of the Paper
In section 2 we compute the values of the Harish-Chandra function and prove that it is spherical using partitions 
of the boundary where the Busemann function is constant. In section 3, we show (using results from [BL17]) 
that the representation is c-tempered in the sense of [KYD22] (using results from [Kuh94] and [Haa78] about 
the extension of our representation and the regular one). To conclude, in section 4, we adapt and detail the 
proof one can find in [KYD22] to obtain our asymptotic orthogonality relations by showing some intermediate 
results based on functional analysis from [RS81] and explain how we obtain our initially mentioned formula.
   

                                             
Figure 2: Example with [x0, x] = (x0, x1, x2) illustrating Lemma 2.1 where the family (E0, E1, E2) is a partition 
of the boundary.

2. Computing the Harish-Chandra Function
2.1 Partitions where the Busemann Function is Constant
Lemma 2.1
Let x < Sn such that [x0, x] = (x0, x1, . . . , x = xn). One defines the following sets:

                  
                                      
Then {E0(x), . . . , En(x)} is a partition of Ω (see Figure 2 for an example where n = 2).
Moreover, ω → βω(x0, x) is constantly equal to 2k — n on Ek(x).
One computes:

 
                         
                                    

2.2 Computation: The Harish-Chandra Function is Spherical
Here we define Ξ and show that it is constant on Sn by computing its value.
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Note that Ξ(0) := Ξ(e) = 1
Now, let n ≥1, and g such that g < Sn and compute

                               
So, Ξ is spherical and we can define:
Ξ :  N  → R→*
n'→  Ξ(g)  (where g is any element of Sn)

1.	 π is C-Tempered
Here we will prove that π is c-tempered, in the sense of Kazhdan and Yom Din in section 2 «Notion of 
c-temperedness»[KYD22, def 2.1].
For all subset L⸦G and all ψ1, ψ2 < H, one can define the quantity:

                            
In particular, we have

                            
Using the spherical property of Ξ, one computes:

    
                             (3) and (4)
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Considering the sequence {Bn}n€N of balls in G and our unit vector 1Ω < H. Then if the two following conditions are 
satisfied: 
(5)	  

One says that π is c-tempered with Følner sequence {Bn}nPN (see [KYD22, def 2.1]).

Remark 3.1
The condition (6) is equivalent to the second condition in the definition [KYD22, def 2.1] because G is discret, therefore 
its compacts are the finite sets.

Lemma 3.2
π satisfies the first condition (5).

Proof 
By [Kuh94], we know that π is weakly contained in the regular representation πreg. In particular, the extensions on l1(G) 
of these representations:

                                      
(where ρ < {π, πreg}) satisfy:

                                   
Moreover, by [Haa78], we have:

                                  
Consider the sequence of l2(G) functions {fk}k defined as

                                 
One has, fixing arbitrary unitary ψ1, ψ2 < H:
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and since ||fk|| 2 = Mψ1,ψ2 , we obtain

                                                                     

So, by equation (3),

                                                            

                           
But one can easily check that (uk)k€N is bounded. So there is a C < R+

(which does not depend on k) such that:

                            (7)
Hence,

                          
Lemma 3.3
π satisfies the second condition (6).

Proof
Let k := |g| + |h|
One can easily show that:

                                  
and

                            

                            
Recalling the computation done in (4) which gives:
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So,

                
The left hand side converging to zero since the degree 3 coefficient of the numerator vanishes.	

4.	 Asvmptotic Schur’s Orthogonalitv Relations for π
Now that we have the conditions (5) and (6) for our representation, we can detail the proof of proposition 2.3 
found in [KYD22]. Namely, in our case, for all ψ1, ψ2, ψ3 and ψ4 < H:

                     (8)

We denote by  the conjugate of our vector space . This allows us to see any sesquilinear form of  (like 

 to be a bilinear one on .

Lemma 4.1

Let B: → C be a bounded bilinear form such that B(π(g)ψ1, π(g)ψ3) = B(ψ1, ψ3)  

Then B € C(·, ·).
In other words, there is a constant λ in C such that B = λ(·, ·).

Proof
For all ψ1 in H, Riesz lemma gives us an element T (ψ1) such that B(ψ1, ·) = (T (ψ1), ·).
This defines a map T: H → C which is linear and bounded. Indeed:

                            
and,
     

                         
Moreover, T is an intertwining operator since:
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Hence, by irreducibility of π and the application of Schur’s Lemma mentioned in (1) implies that T < CIdH and B = (T 
(·), ·) < C(·, ·).	
 
Remark 4.2

If D: → C is a bounded bilinear form such that and ψ2, ψ4 < H, D(π(g)ψ2, π(g)ψ4) = B(ψ2, ψ4).

Then, composing it with the flip operator F which swap the coordinates, we obtain that B:= D◦F satisfies the conditions 
of the previous lemma (4.1). So D ◦ F < C(·, ·), that is to say D < C(·, ·).

One last simple lemma (about convergence in C) before proving the equation (8) mentioned at the beginning of the 
section:
Lemma 4.3
Let (un)n€N € CN and l € C. Then

is equivalent to the following condition:

For all subsequences (uα(n))n€N, there is a further subsequence (uα˝γ(n))n€N

such that 

Theorem 4.4
Given any ψ1, ψ2, ψ3 and ψ4€H:

                                         

                       
Proof

Define 

                                
Then Sn is clearly bilinear and, since π is c-tempered, we have by the first condition of c-temperedness (5),

                     

                             
This shows that (Sn(ψ1, ψ2))nPN bounded in L2(G) and, by the Banach- Steinhaus theorem,
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                                     (9)

Now, , one can define the quadrilinear form

                            
(Qn)nPN is also uniformly bounded, since, using Cauchy-Schwartz in- equality and equation (9), we see, for unitary ψ1, 
ψ2, ψ3 and ψ4:

                                

Next we will show that, , we have: 

                                 (10)

Indeed, one can show that:

                                 

which tends to 0 when n goes to infinity since π is c-tempered (see condition 2 of c-temperedness (6)).

Now, One can consider any subsequence (Qα(n))n€N and an application of the Banach-Alaoglu theorem in  gives 

us a further subsequence (Qα˝γ(n))n€N which converges point-wise to some Q in 

(11)	

               
Now, by (10), we have:
Q (π(g)ψ1, π(h)ψ2, π(g)ψ3, π(h)ψ4) = Q (ψ1, ψ2, ψ3, ψ4)
and Q is also quadrilinear.
In particular, if we fix (ψ2, ψ4) < H × H and consider the map
Q(·, ψ2, ·, ψ4) (which satisfies the conditions of lemma 4.1).

We know that, such that:
Q(·, ψ2, ·, ψ4) = λψ2,ψ4 (·, ·).

Similarly, fixing (ψ1, ψ3) and by the remark 4.2 following the mentioned lemma, we have 

such that:

                     
Next, using the definition of these coefficient one calculate λ1Ω,1Ω = 1,   
λψ1,ψ3 = (ψ1, ψ3) and Q(ψ1, ψ2, ψ3, ψ4) = λψ1,ψ3 (ψ2, ψ4) = (ψ1, ψ3)(ψ2, ψ4). To finish the proof, Let ψ1, ψ2, ψ3, ψ4 € H and 
define:
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and consider any subsequence (uα(n))n€N.

Since uα(n) = Qα(n)(ψ1, ψ2, ψ3, ψ4), has further subsequence converging to

                    
Remark 4.5
A unitary representation which satisfies these orthogonality relations has to be irreducible.
So, using the equation result (8) of our last theorem, and the computation of M1Ω,1Ω (Bn) we did in (4), we obtain the 
concrete result mentioned at the beginning of this paper:
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